Die Mosher-Säure (abgekürzt als MTPA vom englischen α-Methoxy-α-trifluoromethylphenylacetic acid) ist eine chirale Carbonsäure, die von Harry S. Mosher (1915–2001) eingeführt wurde, um chirale Verbindungen wie Alkohole oder Amine in die entsprechenden Diastereomeren Ester bzw. Amide zu überführen.[3][4][5][6] Beide Enantiomere [die (S)- oder die (R)-Form] der chiralen Mosher-Säure können hierzu eingesetzt werden. Aufgrund seiner sehr viel höheren Reaktivität wird häufig auch das Säurechlorid verwendet.[7]

Strukturformel
Strukturformeln beider Enantiomerer der Mosher-Säure
(R)-Mosher-Säure (links) und (S)-Mosher-Säure (rechts)
Allgemeines
Name Mosher-Säure
Andere Namen
  • 3,3,3-Trifluor-2-methoxy-2-phenylpropansäure (IUPAC)
  • MTPA
  • α-Methoxy-α-trifluormethylphenylessigsäure
Summenformel C10H9F3O3
Externe Identifikatoren/Datenbanken
CAS-Nummer
EG-Nummer (Listennummer) 625-074-7
ECHA-InfoCard 100.153.604
PubChem 86531
ChemSpider 78043
Wikidata Q408407
Eigenschaften
Molare Masse 234,17 g·mol−1
Dichte

1,303 g·cm−3[1]

Schmelzpunkt
  • 40–45 °C (Racemat)[2]
  • 46–49 °C [(R)-Form oder (S)-Form][1]
Siedepunkt

95–97 °C (0,05 mmHg)[1]

Sicherheitshinweise
GHS-Gefahrstoffkennzeichnung[2]
Gefahrensymbol

Achtung

H- und P-Sätze H: 315​‐​319​‐​335
P: 261​‐​305+351+338[2]
Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet. Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen.

Anwendung Bearbeiten

Die enantiomerenreine Mosher-Säure wird als chirales Derivatisierungsreagenz von Alkoholen oder Aminen benutzt, um eine chirale Verbindung in ein Diastereomer zu überführen. Schematisch wird die Umsetzung von racemischem Amphetamin mit enantiomerenreinem (S)-Mosher-Säurechlorid gezeigt. Durch das Überführen der (R)-Moshher-Säure in das Säurechlorid ändert sich gemäß den CIP-Regeln die Benennung von (R) zu (S). Die Enantiomere (R)- und (S)-Amphetamin zeigen identische NMR-Spektren, jedoch unterscheiden sich die Diastereomere (RS) und (RR) im NMR voneinander.

 
Reaktion von (S)-Mosher-Säurechlorid mit racemischen Amphetamin

Je nach Resonanz sind Shifts von bis zu 47 Hertz möglich.[8]

Mit Hilfe der Diastereomere kann der Enantiomerenüberschuss einer stereospezifischen Reaktion bestimmt oder die absolute Stereochemie eines Produkts ermittelt werden. Zur Bestimmung der absoluten Konfiguration werden die 1H- und 19F-NMR-Spektroskopie benutzt.[9]

Einzelnachweise Bearbeiten

  1. a b c Datenblatt (S)-(−)-α-Methoxy-α-(trifluoromethyl)phenylacetic acid, ≥99% bei Sigma-Aldrich, abgerufen am 1. Dezember 2019 (PDF).
  2. a b c Datenblatt (±)-α-Methoxy-α-trifluoromethylphenylacetic acid, for GC derivatization, LiChropur bei Sigma-Aldrich, abgerufen am 1. Dezember 2019 (PDF).
  3. J. A. Dale, D. L. Dull, H. S. Mosher: α-Methoxy-α-trifluoromethylphenylacetic acid, a versatile reagent for the determination of enantiomeric composition of alcohols and amines. In: Journal of Organic Chemistry 1969, 34, S. 2543–2549 doi:10.1021/jo01261a013.
  4. J. A. Dale, H. S. Mosher: Nuclear magnetic resonance enantiomer regents. Configurational correlations via nuclear magnetic resonance chemical shifts of diastereomeric mandelate, O-methylmandelate, and α-methoxy-α-trifluoromethylphenylacetate (MTPA) esters. In: Journal of the American Chemical Society 1973, 95, S. 512–519 doi:10.1021/ja00783a034.
  5. Y. Goldberg, H. Alper: A new and simple synthesis of Mosher's acid. In: Journal of Organic Chemistry 1992, 57, S. 3731–3732 doi:10.1021/jo00039a043.
  6. D. L. Dull, H. S. Mosher: Aberrant rotatory dispersion curves of α-hydroxy- and α-methoxy-α-trifluoromethylphenylacetic acids. In: Journal of the American Chemical Society 1967, 89, S. 4230–4230 doi:10.1021/ja00992a053.
  7. D. E. Ward, C. K. Rhee: A simple method for the microscale preparation of Mosher's acid chloride. In: Tetrahedron Letters 1991, 32, S. 7165–7166 doi:10.1016/0040-4039(91)80466-J.
  8. D. Parker: NMR determination of enantiomeric purity. In: Chem. Rev. 91. Jahrgang, Nr. 7, 1991, S. 1441–1457, doi:10.1021/cr00007a009.
  9. Allen, Damian A.; Tomaso, Anthony E., Jr.; Priest, Owen P.; Hindson, David F.; Hurlburt, Jamie L.: Mosher Amides: Determining the Absolute Stereochemistry of Optically-Active Amines. In: J. Chem. Educ. 2008, 85, S. 698. doi:10.1021/ed085p698.