Lagrangesche Untermannigfaltigkeit
In der symplektischen Geometrie, der mathematischen Formalisierung der hamiltonschen Mechanik, werden die maximalen isotropen Untermannigfaltigkeiten symplektischer Mannigfaltigkeiten als lagrangesche Untermannigfaltigkeiten bezeichnet.
Ihre Bedeutung stammt unter anderem daher, dass sich Fragen über periodische Bahnen hamiltonscher Systeme in Fragen über die Schnitte lagrangescher Untermannigfaltigkeiten übersetzen lassen. Sei nämlich die Zeit-1-Abbildung eines hamiltonschen Flusses, dann liegt genau dann auf einer 1-periodischen Bahn, wenn zum Schnitt der lagrangeschen Graphen von und gehört.
Definition
BearbeitenEine Untermannigfaltigkeit einer symplektischen Mannigfaltigkeit heißt isotrop, wenn
gilt, das heißt wenn die Einschränkung der symplektischen Form auf den Tangentialraum von verschwindet. Für die Dimension einer isotropen Untermannigfaltigkeit gilt die Ungleichung .
Eine lagrangesche Untermannigfaltigkeit einer 2n-dimensionalen symplektischen Mannigfaltigkeit ist eine n-dimensionale isotrope Untermannigfaltigkeit , also eine isotrope Untermannigfaltigkeiten maximaler Dimension.
Beispiele
Bearbeiten- Im symplektischen ist jede Kurve eine lagrangesche Untermannigfaltigkeit.
- Im symplektischen ist der den Koordinaten entsprechende eine lagrangesche Untermannigfaltigkeit.
- Der Nullschnitt im symplektischen Kotangentialbündel ist eine lagrangesche Untermannigfaltigkeit.
- Sei eine symplektische Mannigfaltigkeit. Der Funktionsgraph einer Abbildung ist genau dann eine lagrangesche Untermannigfaltigkeit von , wenn ein Symplektomorphismus ist.
- Satz von Arnold-Liouville: Zu einem auf einer -dimensionalen symplektischen Mannigfaltigkeit durch Funktionen mit verschwindenden Poisson-Klammern gegebenen integrablen System sind die Niveauflächen lagrangesche Untermannigfaltigkeiten.
Literatur
Bearbeiten- V. I. Arnold: Mathematical Methods of Classical Mechanics (= Graduate Texts in Mathematics. Bd. 60). 2. Auflage, Springer, New York NY u. a. 1989, ISBN 0-387-96890-3.