Gabriels Horn

geometrischer Körper, der eine unendliche Oberfläche, aber ein endliches Volumen besitzt

Gabriels Horn (auch Torricellis Trompete) ist ein von Evangelista Torricelli beschriebener Körper, der eine unendliche Oberfläche, aber ein endliches Volumen besitzt.[1] Der Name leitet sich zum einen aus der einem Blasinstrument ähnelnden Form, zum anderen aus der Tradition her, den Erzengel Gabriel als den Engel anzusehen, der das Horn bläst, um das Jüngste Gericht anzukündigen, wobei dabei die Unendlichkeit mit der Göttlichkeit assoziiert wird.

3D-Modell von Gabriels Horn

Mathematische Definition Bearbeiten

 
Das linke Ende von Gabriels Horn
 
Plot der hyperbolischen Funktion y = 1/x

Gabriels Horn ergibt sich, wenn man den Graphen der Funktion   mit dem Definitionsbereich   (um die Polstelle bei x = 0 zu vermeiden) um die x-Achse rotieren lässt. Volumen ( ) und Mantelfläche ( ) dieses Rotationskörpers berechnen sich auf folgende Weise:

 
 

Im Fall des Volumens existiert – wie bei allen Funktionen   mit   – das uneigentliche Integral von 1 bis  , das heißt, es konvergiert gegen einen endlichen Wert, denn es ist

 

Um die Größe der Mantelfläche abschätzen zu können, muss die Funktion   integriert werden. Eine Stammfunktion ist der natürliche Logarithmus und das Integral über den Bereich von 1 bis zu einem festen   ist:

 

Da der natürliche Logarithmus unbeschränkt ist, gibt es keinen endlichen Grenzwert dieses Integrals für  , so dass die Mantelfläche des Körpers unendlich groß ist.

Farbmenge bei Füllung und Bedeckung mit Farbe Bearbeiten

Da Gabriels Horn ein endliches Volumen besitzt, kann man es mit einer endlichen Menge Farbe füllen. Für das Bedecken einer unendlich großen Fläche benötigt man jedoch eine unendlich große Menge Farbe. Wenn man die Innenseite des Horns betrachtet, scheint für deren Bedeckung einerseits – wegen der unendlich großen Fläche – unendlich viel Farbe erforderlich zu sein. Andererseits ist die Innenseite bei der Füllung des Horns, für die nur ein endliches Volumen benötigt wird, vollständig bedeckt.

Dieser Widerspruch wird auch als Maler-Paradoxon bezeichnet. Bei diesem scheinbaren Paradoxon ist nicht berücksichtigt, dass bei einer realen Bedeckung mit Farbe die Farbschicht eine bestimmte Dicke hat. Wenn diese endlich große Dicke größer als der Radius des Horns wird, wird von der Farbe der gesamte Querschnitt des Horns ausgefüllt. Dann wird die benötigte Farbmenge nicht mehr durch die Oberfläche, sondern durch das Volumen bestimmt. Die benötigte Farbmenge kann also nicht bestimmt werden, indem die unendlich große Fläche mit einer endlich großen Dicke der Farbschicht multipliziert wird. Geht man dagegen von einer unendlichen dünnen Farbschicht ohne Volumeneigenschaft aus, kann man deren nicht existierendes Volumen auch nicht mit dem Volumen des Körpers vergleichen.

Siehe auch Bearbeiten

Weblinks Bearbeiten

Einzelnachweise Bearbeiten

  1. Johanna Heitzer: Spiralen, ein Kapitel phänomenaler Mathematik. Ernst Klett Schulbuchverlag, Leipzig 1998, S. 48