Hauptmenü öffnen

Theorie des Übergangszustandes

molekulare Theorie zur Reaktionskinetik
(Weitergeleitet von Eyring-Theorie)
Reaktionskoordinaten-Diagramm für die Reaktion zwischen Brommethan und dem Hydroxidanion

Die Theorie des Übergangszustandes[1] (englisch Transition state theory, TST), auch Eyring-Theorie genannt (nach Henry Eyring,[2] 1901–1981), ist eine molekulare Theorie zur Reaktionskinetik. Sie wurde unter Berücksichtigung molekularer Größen, der Zustandssummen, abgeleitet und ermöglicht die Bestimmung der absoluten Reaktionsgeschwindigkeitskonstanten einer chemischen Reaktion. Diese Reaktionsrate kann dann in einer Ratengleichung verwendet werden. Zu den Begründern der Theorie zählen neben Eyring in Princeton Michael Polanyi und Meredith Gwynne Evans in England.

Die Edukte sind von den Produkten durch einen Potentialwall (Aktivierungsbarriere) getrennt, der einen Sattelpunkt auf der Potentialhyperfläche darstellt. Die Reaktion der Edukte über den Übergangszustand zu den Produkten verläuft entlang einer Trajektorie, der Reaktionskoordinate (Weg zwischen den Edukten und Produkten mit jeweils minimaler Änderung der potentiellen Energie). Der Punkt höchster potentieller Energie auf dieser Reaktionskoordinate ist der Übergangszustand. Der Begriff Aktivierter Komplex bezeichnet die Anordnung der Teilchen im Übergangszustand (es handelt sich nicht um einen Komplex im Sinne des Artikels Komplexchemie)[3]. Kramers Theorie zur Reaktionskinetik erweitert die TST.

Die wichtigsten Annahmen, die der TST zugrunde liegen, sind:

  • Separation von Kern- und Elektronenbewegung, analog zur Born-Oppenheimer-Näherung
  • Die Wahrscheinlichkeitsdichte der Energiezustände der Edukte lässt sich durch eine Boltzmann-Verteilung beschreiben.
  • Im Übergangszustand kann die Bewegung entlang der Reaktionskoordinate von anderen Bewegungen separiert und klassisch als Translation behandelt werden.
  • Der Übergangszustand steht mit den Edukten in einem Gleichgewicht. (Quasi-Gleichgewichts-Hypothese)
  • Nur Edukte reagieren zu Produkten, nicht umgekehrt (Einbahnstraßenverkehr).

Als Ergebnis der Herleitung ergibt sich die Eyring-Gleichung:

= Geschwindigkeitskonstante, = Transmissionskoeffizient (nicht im Sinne von Optik), = Boltzmann-Konstante, = Temperatur, = Planck’sches Wirkungsquantum, = Gleichgewichtskonstante des Übergangszustandes.

Die TST erklärt den Mechanismus der Katalyse: durch eine Erniedrigung der Aktivierungsenergie wird die Reaktionsgeschwindigkeitskonstante erhöht.

HerleitungBearbeiten

Die Herleitung erfolgt für eine Beispielreaktion, in der die Edukte   und   zum Produkt   reagieren. Als Zwischenstufe wird der Übergangszustand   definiert.

 

Die Reaktionsgeschwindigkeit wird als Produktbildungsgeschwindigkeit definiert,

 

wobei die relative Aktivität des Übergangszustandes   durch die Gleichgewichtskonstante des vorgelagerten Gleichgewichtes (gemäß dem Reaktionsquotienten)

 

und die Konzentrationen von A und B ersetzt wird. Es ergibt sich:

 

Man fasst zusammen und bezieht die Produktbildungsgeschwindigkeit auf die Edukte   und  

 

und erhält für die Geschwindigkeitskonstante  

 

Die weitere Herleitung unterscheidet sich je nach Lehrbuch. Es ergibt sich die oben angegebene Eyring-Gleichung.

Die Geschwindigkeitskonstante   ergibt sich als

 

wobei der Transmissionskoeffizient   nicht abgeleitet wird, sondern als zusätzlicher Parameter zur Anpassung von experimentellen Ergebnissen an die berechneten eingeführt wird.

Damit gilt also:

 .

mit   und   der Differenz der Standard freien Enthalpien der Edukte und des Übergangszustandes.

  hat bei   einen Wert von   und wird als Frequenz-Faktor bezeichnet. Er liegt in der Größenordnung von Stoßfrequenzen der Moleküle in Flüssigkeiten.

Somit ergibt sich die endgültige Form:

 

Thermodynamische FormulierungBearbeiten

Mit der van-’t-hoffschen Reaktionsisothermen   ergibt sich:

 

Die Legendre-Transformation   der Gibbs-Helmholtz-Gleichung erlaubt eine Darstellung als:

 

Aus der Arrhenius-Gleichung   ergibt sich eine formale Definition für die Aktivierungsenergie  :

 

Analog lässt sich die Eyring-Gleichung unter Berücksichtigung der van-’t-hoffschen Reaktionsisobare   umschreiben:

 

Daraus folgt mit der Definition der Enthalpie   (bei konstantem Druck):

 

Für unimolekulare Reaktionen ist   und für Reaktionen in Lösungen und kondensierter Materie näherungsweise Null:

 

Bei idealen Gasen ergibt sich für den präexponentiellen Faktor:

 

KritikBearbeiten

  • Die TST basiert auf der klassischen Mechanik. Bei Reaktionen sehr leichter Spezies, zum Beispiel Wasserstoff- oder Deuterium-Atome, treten Tunneleffekte auf, für deren Beschreibung eine quantenmechanische TST nötig wäre. Dieses Problem wurde bisher noch nicht zufriedenstellend gelöst.
  • Nur wenn die Bewegung auf der Potentialhyperfläche eine eindimensionale Bewegung entlang der Reaktionskoordinaten ist, ist die Annahme gerechtfertigt, dass die Bewegung entlang der Reaktionskoordinaten separiert werden kann von den anderen Freiheitsgraden. Diese Annahme ist aber für die Herleitung der Eyring-Gleichung nötig.
  • Für höhere Temperaturen sind anharmonische Korrekturen des Potentials am Sattelpunkt nötig.

Siehe auchBearbeiten

WeblinksBearbeiten

EinzelnachweiseBearbeiten

  1. Eintrag zu Transition State Theory. In: IUPAC Compendium of Chemical Terminology (the “Gold Book”). doi:10.1351/goldbook.T06470 Version: 2.3.3.
  2. H. Eyring: The Activated Complex in Chemical Reactions. In: J. Chem. Phys. 1935, 3, 107; doi:10.1063/1.1749604.
  3. Eintrag zu Activated Complex. In: IUPAC Compendium of Chemical Terminology (the “Gold Book”). doi:10.1351/goldbook.A00092 Version: 2.3.3.

LiteraturBearbeiten