Spektrum (Graphentheorie)

Graphentheorie, Teilgebiet der Mathematik

Das Spektrum dient in der Graphentheorie zur Untersuchung der Eigenschaften von Graphen. Das entsprechende Gebiet wird als Algebraische Graphentheorie oder Spektrale Graphentheorie bezeichnet. Die Berechnung des Spektrums eines Graphen ermöglicht einen sehr effektiven Algorithmus zum Graphenzeichnen (Hall's Algorithmus.) Auch Expandergraphen können mittels spektraler Methoden charakterisiert werden.

DefinitionBearbeiten

Als Spektrum eines Graphen bezeichnet man die (nach Größe geordnete) Folge der Eigenwerte seiner Adjazenzmatrix. Letztere werden auch als Eigenwerte des Graphen bezeichnet.

(Ungerichtete Graphen haben eine symmetrische Adjazenzmatrix und deshalb reelle Eigenwerte.)

Graph Adjazenzmatrix Eigenwerte
 
 
 

Häufig werden auch die Eigenwerte der Laplace-Matrix des Graphen als sein Spektrum bezeichnet.

BeispieleBearbeiten

Die folgenden Beispiele beziehen sich auf das Spektrum der Adjazenzmatrix.

 .
 .

LiteraturBearbeiten

  • Cvetković, Dragoš M.; Doob, Michael; Sachs, Horst: Spectra of graphs. Theory and applications. Third edition. Johann Ambrosius Barth, Heidelberg, 1995. ISBN 3-335-00407-8
  • Biggs, Norman: Algebraic graph theory. Second edition. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 1993. ISBN 0-521-45897-8
  • Godsil, Chris; Royle, Gordon: Algebraic graph theory. Graduate Texts in Mathematics, 207. Springer-Verlag, New York, 2001. ISBN 0-387-95241-1; 0-387-95220-9

WeblinksBearbeiten