Hauptmenü öffnen

Randbedingung

Umstände, die nur wenig oder gar nicht beeinflussbar sind
(Weitergeleitet von Rahmenbedingung)

Randbedingungen (gelegentlich auch als Rahmenbedingungen bezeichnet) sind im Allgemeinen Umstände, die nur mit großem Aufwand oder gar nicht beeinflussbar sind oder sich aus der Problemstellung zwingend ergeben, und daher als gegebene Größen (Datenparameter) betrachtet werden müssen, beispielsweise bei wissenschaftlichen Versuchen oder bei mathematischen Berechnungen.

In vielen Fällen wird der Begriff Randbedingung auch als Synonym zu „Nebenbedingung“ verwendet.

Inhaltsverzeichnis

Randbedingungen und DifferentialgleichungenBearbeiten

Im Bereich der Differentialgleichungen sind Randbedingungen konkrete Angaben zum Berechnen der Lösungsfunktion   auf einer Definitionsmenge  . Dazu werden die Werte der Funktion auf dem Rand (im topologischen Sinn) des gewünschten Definitionsbereichs   vorgegeben. Im einfachsten Fall ist   ein Intervall, und die Randbedingungen sind vorgegebene Funktionswerte  . Werden hier statt zwei Werten nur an einem Randpunkt des Intervalles – meistens   – Werte für   und zusätzlich für Ableitungen von   vorgegeben, so spricht man von einem Anfangswertproblem und nennt die vorgegebenen Werte seine Anfangsbedingungen.

Bei partiellen Differentialgleichungen betrachtet man die Differentialgleichung meistens auf Sobolew-Räumen. In diesen Räumen werden Funktionen, die bis auf Nullmengen übereinstimmen, als gleich angesehen. Da der Rand eines Gebietes üblicherweise eine Nullmenge ist, ist der Begriff der Randbedingung problematisch. Lösungen für dieses Problem sind sobolewsche Einbettungssätze oder – allgemeiner – Spuroperatoren.

Randwertaufgaben haben nicht immer eine Lösung (siehe Beispiel), im Falle ihrer Existenz ist die Lösung nicht in allen Fällen eindeutig. Die Berechnung einer Näherungslösung für eine Randwertaufgabe mit Mitteln der numerischen Mathematik ist oft aufwendig und läuft meist auf die Lösung sehr großer Gleichungssysteme hinaus.

BeispielBearbeiten

Sei die gegebene Differentialgleichung  . Die Lösungsmenge dieser Gleichung ist  .

  • Gesucht ist die Lösung mit   und     Die Lösung ist  .
  • Periodische Randbedingung: Gesucht ist die Lösung mit   und     Es gibt unendlich viele Lösungen der Form   mit beliebigem  .
  • Gesucht ist die Lösung mit   und    Es gibt keine Lösung.

Arten von RandbedingungenBearbeiten

Es gibt unterschiedliche Möglichkeiten, auf dem Rand des betrachteten Gebietes Werte vorzuschreiben. Eine Möglichkeit ist es, Werte der Lösung vorzuschreiben, im Fall einer auf dem Intervall   definierten gewöhnlichen Differentialgleichung also   und  , dann spricht man von Dirichlet-Randbedingungen. Auf der anderen Seite kann man Bedingungen an die Ableitungen stellen, also   und   vorgeben, dann spricht man von Neumann-Randbedingungen (bei gewöhnlichen Differentialgleichungen, wie oben ausgeführt, von Anfangsbedingungen). Ein Spezialfall sind periodische Randbedingungen, hier muss (im Beispiel einer auf dem Intervall   betrachteten gewöhnlichen Differentialgleichung)   bzw.   gelten.

Künstliche RandbedingungenBearbeiten

Bei unbeschränkten Gebieten erfordert die numerische Lösung üblicherweise eine Einschränkung des Gebiets. Hier sind dann Randbedingungen vorzugeben, die im eigentlichen Problem nicht vorhanden, also künstlich sind.

WirtschaftswissenschaftenBearbeiten

In der Betriebswirtschaftslehre und der Volkswirtschaftslehre entsprechen die Randbedingungen den kurzfristig oder gar nicht durch den Entscheidungsträger beeinflussbaren Datenparametern wie beispielsweise die Umweltzustände der Witterung oder der Gesetze.

Siehe auchBearbeiten

WeblinksBearbeiten

  Wiktionary: Randbedingung – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen