Primzahlpotenz

Potenz einer Primzahl

Primzahlpotenzen (kurz Primpotenzen) sind natürliche Zahlen, die eine Potenz einer Primzahl sind, z. B. .

Primzahlpotenzen treten bei endlichen Körpern auf. Die Anzahl der Elemente eines endlichen Körpers ist immer eine Primzahlpotenz.

Beispiele und WerteBearbeiten

  •  
  •  
  •  

Die ersten Primzahlpotenzen sind:

2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 37, 41, 43, 47, 49, 53, 59, 61, 64, 67, 71, 73, 79, 81, 83, 89, 97, 101 …[1]

Klammert man die einfachen Primzahlen aus, also die Primpotenzen mit 1 als Exponent, erhält man:

4, 8, 9, 16, 25, 27, 32, 49, 64, 81, 121, 125, 128, 169, 243, 256, 289, 343, 361, 512, 529, 625, 729, 841, 961, 1024, 1331 …[2]

ModulBearbeiten

  •  
  •  

...

  •  

...

VerallgemeinerungBearbeiten

In beliebigen kommutativen Ringen mit   werden Primzahlpotenzen durch primäre Ideale und irreduzible Ideale verallgemeinert. In Dedekindringen sind Ideale genau dann primär bzw. irreduzibel, wenn sie von einer Potenz eines Primelementes erzeugt werden.

SonstigesBearbeiten

Im Film Cube (1997) markieren Primzahlpotenzen diejenigen Räume einer kubischen Labyrinthstruktur, die tödliche Fallen enthalten.

WeblinksBearbeiten

EinzelnachweiseBearbeiten

  1. A000961 - OEIS. Abgerufen am 19. November 2021.
  2. A025475 - OEIS. Abgerufen am 19. November 2021.