Hauptmenü öffnen
Geoffrey Hinton

Geoffrey E. Hinton (* 6. Dezember 1947 in Wimbledon, Großbritannien) ist ein britischer Informatiker und Kognitionspsychologe, der vor allem für seine Beiträge zur Theorie künstlicher neuronaler Netze bekannt ist.

Inhaltsverzeichnis

Leben und AusbildungBearbeiten

Geoffrey Hinton wurde als Sohn des Insektenkundlers Howard Hinton und als Ururenkel des Logikers George Boole geboren.[1] Er wuchs als Atheist an einer christlichen Schule auf.[2] Angetrieben durch sein Vorhaben den menschlichen Verstand zu begreifen, studierte er von 1967 bis 1970 Experimentalpsychologie an der Universität Cambridge (England), er wechselte jedoch aus Unzufriedenheit mit den Lehrinhalten zwischenzeitlich zur Physiologie und Philosophie. Auch von diesen Disziplinen enttäuscht, beendete er schließlich doch sein Studium mit einem Abschluss in der Psychologie. Erst als Doktorand wurden seine Studien der damals unpopulären neuronalen Netze von seinen Betreuern toleriert. Hinton war fest davon überzeugt, dass neuronale Systeme für die Erklärung und Nachbildung von Intelligenz hinreichend und notwendig sind. Im Jahre 1978 erhielt er seinen PhD in Künstlicher Intelligenz von der Universität Edinburgh (Schottland).[3] Nach Aufenthalten an der Universität Sussex (England), der University of California, San Diego (USA) und der Carnegie-Mellon Universität (Pittsburgh, USA) wurde er 1987 Professor am Computer Science Department der Universität Toronto (Kanada). Von 1998 bis 2001 entstand unter seiner Leitung die Gatsby Computational Neuroscience Unit am University College London, seitdem arbeitet er weiter als Professor an der Universität Toronto. Seit März 2013 arbeitet Hinton neben seiner Arbeit an der Universität Toronto bei Google[4].

LeistungenBearbeiten

Geoffrey Hinton untersucht die Anwendung von künstlichen neuronalen Netzen in den Bereichen Lernen, Gedächtnis, Wahrnehmung und Symbolverarbeitung. Er gehörte zu den Wissenschaftlern, die den Backpropagation-Algorithmus einführten (in einem Nature Aufsatz von 1986 mit David Rumelhart und Ronald Williams) und entwickelte unter anderem die Konzepte der Boltzmann-Maschine und der Helmholtz-Maschine. Leicht verständliche Einführungen in seine wissenschaftliche Arbeit finden sich in seinen Artikeln im Scientific American von 1992 und 1993.

Ehrungen und MitgliedschaftenBearbeiten

2001 erhielt er den ersten Rumelhart-Preis für „theoretische Beiträge in den Grundlagen menschlicher Erkenntnis“ und 2005 den IJCAI Award for Research Excellence. Er wurde 1996 in die Royal Society of Canada, 1998 in die Royal Society und 2003 in die American Academy of Arts and Sciences aufgenommen. 2016 wurde er in die National Academy of Engineering gewählt. Für 2016 erhielt er den BBVA Foundation Frontiers of Knowledge Award, für 2018 den Turing Award.[5][6]

WerkeBearbeiten

  • How neural networks learn from experience. In: Scientific American. 9/1992
  • mit D. C. Plaut und T. Shallice: Simulating brain damage. In: Scientific American. 10/1993

EinzelnachweiseBearbeiten

  1. http://www.cse.buffalo.edu/~rapaport/111F04/boole.html
  2. Archivierte Kopie (Memento des Originals vom 20. Juni 2015 im Internet Archive)   Info: Der Archivlink wurde automatisch eingesetzt und noch nicht geprüft. Bitte prüfe Original- und Archivlink gemäß Anleitung und entferne dann diesen Hinweis.@1@2Vorlage:Webachiv/IABot/www.cifar.ca
  3. http://www.thestar.com/news/world/2015/04/17/how-a-toronto-professors-research-revolutionized-artificial-intelligence.html
  4. Wired: Google Hires Brains that Helped Supercharge Machine Learning
  5. The Verge, 27. März 2019
  6. Stefan Betschon: Ehre für die «Deep Learning Mafia». Neue Zürcher Zeitung, 4. April 2019, abgerufen am 12. April 2019.

WeblinksBearbeiten