Brunn-Minkowski-Ungleichung

mathematischer Satz

Die Brunn-Minkowski-Ungleichung bzw. der Satz von Brunn und Minkowski, benannt nach den beiden Mathematikern Hermann Brunn und Hermann Minkowski, ist ein klassischer Lehrsatz auf dem mathematischen Teilgebiet der Konvexgeometrie. Die Ungleichung setzt das Lebesgue-Maß der Minkowski-Summe zweier kompakter Teilmengen des n-dimensionalen euklidischen Raums in Relation zum Lebesgue-Maß dieser beiden Teilmengen. Sie hat zahlreiche Anwendungen und zieht insbesondere die isoperimetrische Ungleichung nach sich.[1][2][3][4][5][6][7]

Darstellung der Ungleichung Bearbeiten

Die Ungleichung besagt zusammengefasst Folgendes:

(1) Bildet man im   mit dem Lebesgue-Maß   für zwei nichtleere kompakte Teilmengen  
die Menge aller aus zwei Elementen von   bzw.   bildbaren Summen,
so gilt für die dadurch gegebene Minkowski-Summe
 
die Ungleichung
   .
(2) Sind darüber hinaus   und   sogar konvexe Körper,
so gilt für jede reelle Zahl   mit   die Ungleichung
   .

Erläuterungen und Anmerkungen Bearbeiten

(a) Für zwei nichtleere kompakte Teilmengen   ist auch die Minkowski-Summe   stets eine kompakte Teilmenge des   und insbesondere Lebesgue-messbar.

(b) Für eine nichtleere kompakten Teilmenge   und eine beliebige reelle Zahl   ist die Menge   der mit   multiplizierten Elemente von   ebenfalls stets eine kompakte Teilmenge des   und insbesondere Lebesgue-messbar.

(c) Sieht man bei (1) von der Kompaktheit der beiden Teilmengen   ab und setzt lediglich voraus, dass beide Lebesgue-messbar sein mögen, so ist im Allgemeinen nicht einmal gewährleistet, dass ihre Minkowski-Summe   eine Lebesgue-messbare Teilmenge des   darstellt. Allerdings gilt, wenn man statt des Lebesgue-Maßes   das äußere Lebesgue-Maß   zugrunde legt, die obige Ungleichung (1) in entsprechender Weise. Es gilt sogar für beliebige nichtleere Teilmengen   immer die Ungleichung    .

Literatur Bearbeiten

  • Yu. D. Burago - V. A. Zalgaller: Geometric Inequalities (= Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen. Band 285). Springer Verlag, Berlin (u. a.) 1988, ISBN 3-540-13615-0 (MR0936419).
  • Herbert Federer: Geometric Measure Theory (= Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete. Band 153). Springer-Verlag, Berlin / Heidelberg / New York 1969 (MR0257325).
  • R. J. Gardner: The Brunn-Minkowski inequality. In: Bull. Amer. Math. Soc. (N.S.). Band 39, 2002, S. 355–405 (ams.org). MR1898210
  • H. Hadwiger: Vorlesungen über Inhalt, Oberfläche und Isoperimetrie (= Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete. Band 93). Springer-Verlag, Berlin (u. a.) 1957 (MR0102775).
  • Kurt Leichtweiß: Konvexe Mengen (= Hochschultext). Springer-Verlag, Berlin / Heidelberg / New York 1980, ISBN 3-540-09071-1.
  • Boris Makarov, Anatolij Podkorytov: Real Analysis:. Measures, Integrals and Applications (= Universitext). Springer-Verlag, London (u. a.) 2013, ISBN 978-1-4471-5121-0 (MR3089088).
  • Vitali D. Milman, Gideon Schechtman: Asymptotic Theory of Finite Dimensional Normed Spaces (= Lecture Notes in Mathematics. Band 1200). Springer-Verlag, Berlin (u. a.) 1986, ISBN 3-540-16769-2 (MR0856576).
  • Frederick A. Valentine: Konvexe Mengen (= BI-Hochschultaschenbücher. Band 402/402a). Bibliographisches Institut, Mannheim 1968 (MR0226495).

Einzelnachweise Bearbeiten

  1. Yu. D. Burago, V. A. Zalgaller: Geometric Inequalities. 1988, S. 136 ff, S. 146
  2. H. Hadwiger: Vorlesungen über Inhalt, Oberfläche und Isoperimetrie. 1957, S. 187 ff
  3. Kurt Leichtweiß: Konvexe Mengen. 1980, S. 248 ff
  4. Vitali D. Milman, Gideon Schechtman: Asymptotic Theory of Finite Dimensional Normed Spaces. 1986, S. 134 ff, S. 146
  5. Boris Makarov, Anatolij Podkorytov: Real Analysis: … 2013, S. 87 ff
  6. Frederick A. Valentine: Konvexe Mengen. 1968, S. 196–197
  7. Herbert Federer: Geometric Measure Theory. 1969, S. 277 ff