Ultramarin

Farbe und chemische Verbindung
Ultramarinblau
RGB:18,10,143

Farbcode: #120a8f

Ultramarin (lateinisch ultramarinus ‚überseeisch; über das Meer‘) ist ein blauer Farbton. Ultramarin steht auch für eine Sammelbezeichnung für sehr lichtechte, anorganische Pigmente unterschiedlicher Farbe mit ähnlichem chemischen Aufbau. Die früher zur Pigmentherstellung verwendeten Mineralien wurden „über das Meer“ nach Europa importiert, so entstand der Begriff Ultramarin.

Der Farbton UltramarinBearbeiten

Begriffsklärungen und GeschichteBearbeiten

Mit dem Farbton Ultramarin kennzeichnet man heute den Farbton des Pigments „Ultramarinblau dunkel“, das international unter der Bezeichnung Pigment Blue 29 gehandelt wird. Abweichend davon sind zahlreiche weitere Ultramarinpigmente erhältlich, die grün- oder rotstichig bzw. heller oder dunkler sind. Im erweiterten Sinne deckt der Farbton Ultramarin also den gesamten Bereich von einem Grünblau über ein sattes Blau bis zu einem dunklen Rosa ab. Alle Sorten werden industriell in Produkten des Alltags oder in Künstlerfarben verarbeitet. In der Werbung wird das Blau gerne eingesetzt, um eine positive Stimmung beim Käufer zu wecken. Die Textilindustrie verwendet es als Waschblau schon seit längerer Zeit, da das Blau als Komplementärfarbe zu Gelb den Gelbstich verringert und Textilien rein weiß erscheinen lässt. Ultramaringrün wird heute kaum noch verwendet.

Der Begriff Ultramarin geht auf die Geschichte der Farbenbeschaffung und der Farbenherstellung zurück. Das blaue Gestein Lapislazuli und vor allem das daraus hergestellte Pigment Fra Angelico Blau war wegen seiner Beständigkeit und des aufwändigen Herstellungsverfahrens schon im Mittelalter sehr kostbar. Lapislazuli wird auch in China, Persien und Tibet gefunden. Die besten Sorten kamen aber schon im Mittelalter aus Afghanistan über Venedig nach Europa. So entstand der Name azurro ultramarine, was so viel bedeutet wie „Das Blau von jenseits des Meeres“.[1][2][3] Die Herstellung von Pigmenten aus Lapislazuli ist erst ab dem frühen Mittelalter dokumentiert. Damit gilt Fra Angelico Blau als relativ modernes Blaupigment.[4] Ägyptisch Blau oder Maya-Blau haben eine andere chemische Zusammensetzung und sind wesentlich älter.

SorteneinteilungBearbeiten

Der Colour Index (C. I.) führt folgende Varietäten des Pigments auf[5]

  • Ultramarinblau als Pigment Blue 29 (C. I. 77007)[6]
  • Ultramaringrün als Pigment Green 24 (C. I. 77013; kein kommerz. Produkt) und Pigment Green 55 (C. I. 77007; derzeit kein kommerz. Produkt)
  • Ultramarinrot als Pigment Red 259[7]
  • Ultramarinviolett als Pigment Violet 15[8]

RAL-FarbsystemBearbeiten

Im RAL-Farbsystem ist Ultramarinblau als Farbe RAL 5002 definiert. Heute ist es die Farbe des Technischen Hilfswerks und ganz allgemein die Signalfarbe für Hinweise und Schutzpflicht nach DIN 4844-1:2012-06

Natürliches Ultramarinblau, Fra Angelico BlauBearbeiten

 
Das Jüngste Gericht, aus dem Stundenbuch des Herzogs von Berry, 1412–1416

Natürliches Ultramarinblau oder Fra Angelico Blau wird aus Lapislazuli gewonnen. Seine blaue Farbe erhält das Gestein durch das darin enthaltenen Mineral Lasurit, ein komplexes schwefelhaltiges Aluminiumsilikat. Lapislazuli in herausragender Qualität – also mit hohem Lasuritanteil – ist nur an einer einzigen Fundstelle im Norden Afghanistans zu finden. Aus dem gemahlenen Lapislazuli wird in verschiedenen Reinigungsverfahren das blaue Pigment gewonnen. Dazu wird der zu Pulver zermahlene Lapislazuli mit Wachsen, Harzen und Ölen vermischt, die Masse in Stoffsäckchen aus Baumwolle oder Leinen gefüllt und unter Wasser ausgeknetet. So gelangen nur die feinsten Lasuritteilchen durch das Tuch in das Wasser. Pyrit, Kalk und andere Bestandteile des Lapislazuli bleiben in der Knetmasse zurück. Die Reste im Tuch werden als Ultramarinasche bezeichnet. Insgesamt sind für die Pigmentgewinnung bis zu 49 Arbeitsschritte notwendig, was noch heute den hohen Preis ausmacht. Schon Albrecht Dürer wog das Pigment mit Gold auf.[9] Aufgrund seiner Kostbarkeit konnte es in der Malerei nur sparsam eingesetzt werden und kam vor allem bei bildlichen Darstellungen von Jesus Christus oder der Jungfrau Maria zu Einsatz. Außerdem wurde es in der Buchmalerei verwendet.[10]

Synthetisches UltramarinblauBearbeiten

Ein französischer Ausschuss setzte im Jahre 1824 einen hohen Preis für die Entwicklung eines Verfahrens zur künstlichen Herstellung von Ultramarinblau aus. 1828 erhielt der Franzose Jean-Baptiste Guimet den Preis für die Herstellung aus Quarz, Kaolin, Soda oder Natriumsulfat, Schwefel und Holzkohle, die ihm zwei Jahre zuvor gelungen war. Fast gleichzeitig mit Guimet entwickelte Christian Gottlob Gmelin in Tübingen 1828 ein entsprechendes Verfahren.[11]

Im Jahr 1828 erfand Friedrich August Köttig das Meißner Lasursteinblau, eine Variante des künstlichen Ultramarins. Dieses Herstellungsverfahren erlangte 1829 Fabrikationsreife.

1834 gründete Carl Leverkus die erste deutsche Fabrik zur Herstellung künstlichen Ultramarins. 1845 gelang Wilhelm Büchner die Entwicklung einer erheblich vereinfachten Produktionsweise, die zur Gründung seiner Ultramarinfabrik in Pfungstadt führte.

 
Deckblatt des ersten Reichspatents

1836 begann Johannes Zeltner aus unternehmerischem Interesse, das von Thomas Leykauf und Friedrich Wilhelm Heyne entwickelte Verfahren zur Erzeugung von Ultramarin[12] zu fördern. 1838 errichtete er an der heutigen Zeltnerstraße in Nürnberg die erste Ultramarinfabrik in Bayern, die Nürnberger Ultramarinfabrik. Zeltner meldete am 2. Juli 1877 sein Verfahren zur Herstellung einer rothen Ultramarinfarbe zum Patent an. Dies war das erste Patent in Deutschland überhaupt.[13]

Die jährliche Weltproduktion an Ultramarin beträgt heute über 20.000 Tonnen.[14]

HerstellungBearbeiten

Folgende Rohmaterialien werden für die Herstellung von synthetischem, reinblauem Ultramarin eingesetzt:

  1. Eisenfreies Kaolin (Al2O3 · 2SiO2 · 2H2O) oder ein anderes reines Tonmineral, bei dem das Verhältnis von Kieselsäure (SiO2) zu Aluminiumoxid (Al2O3) dem von Kaolin möglichst gleichen sollte,
  2. kalziniertes (wasserfreies) Natriumsulfat (Na2SO4),
  3. kalziniertes Natriumkarbonat (Waschsoda) (Na2CO3),
  4. Schwefel (pulverisiert) und
  5. Aktivkohlepulver oder Kohle mit einem sehr geringen Ascheanteil oder Kolophonium.

Für Kunststoffsysteme und Lacke, die unter sauren Bedingungen verarbeitet werden, ist Ultramarin wenig geeignet, da es sich in Gegenwart schwacher Säuren mit der Zeit zersetzt. Um die geringe Säurebeständigkeit zu beheben, wurden säurebeständigere Typen entwickelt, in denen die Pigmentpartikel mit Silicaten oder Siliciumdioxid beschichtet sind.[15] Weitere Bearbeitungsprozesse, insbesondere das Mahlen, verringern allerdings die Schutzwirkung dieser Beschichtung.

Kieselsäurearmes UltramarinBearbeiten

Das kieselsäurearme Ultramaringrün erhält man durch die Vereinigung eines Gemisches aus weichem Ton, Glaubersalz (Natriumsulfat), Aktivkohle, Soda und Schwefel. Das Produkt ist zunächst weiß, die Farbe schlägt aber rasch nach Grün um, wenn es nach Zugabe des Schwefels erhitzt wird. Das blaue Pigment lässt sich aus dieser Vorstufe durch Ausbrennen des Gemisches erzeugen.

Kieselsäurereiches UltramarinBearbeiten

Ein kieselsäurereiches Produkt erhält man im Allgemeinen durch Erhitzen einer Mischung aus reinem Kaolin, sehr feinem weißem Sand, Schwefel und Aktivkohle in einem Muffelofen. Daraus entsteht alsbald ein blaues Produkt, das häufig auch einen rötlichen Farbton aufweist. Die verschiedenen Ultramarine – blau, grün, rot bzw. violett (Ultramarinviolett) – werden fein gemahlen und mit Wasser ausgewaschen.

Herstellung aus ZeolithBearbeiten

Anstatt aus Kaolin kann Ultramarin auch bei niedrigeren Temperaturen ab 500 °C aus synthetischem Zeolith A, Soda und Schwefel hergestellt werden.[16] Der Farbton lässt sich durch Wahl des Ausgangszeoliths variieren.[17]

Chemische Struktur und EigenschaftenBearbeiten

Synthetische und natürliche Ultramarine basieren – unabhängig von deren Farbe – auf der chemischen Struktur des farblosen Sodalith. Dieses Mineral gehört zu den Clathraten, die über ein System von sehr kleinen Hohlräumen (Käfigen) verfügen. Bei Sodalith sind die Hohlräume so klein, dass nur wenige Atome in diese Käfige passen. Die Gitterstruktur wird von Aluminium-, Silizium- und Sauerstoffatomen gebildet und enthält Natriumionen, die die Kanäle „verstopfen“ und Elektroneutralität herstellen.

Bei den Ultramarinen enthalten die Hohlräume einfach negativ geladene Polysulfid-Radikalanionen. Diese „eingesperrten“ Ionen verhalten sich anders als elementarer Schwefel. Sie absorbieren das Licht bestimmter Wellenlängen und bilden so ein Farbzentrum. Fällt weißes Licht, wie etwa Sonnenlicht, auf das Pigment, so fehlt in der Reflexion der durch das Pigment absorbierte Anteil des Lichts. Das menschliche Auge registriert allein das reflektierte Licht, das als Körperfarbe wahrgenommen wird. Der Farbton des Pigments hängt von der jeweiligen Struktur und Anzahl der „eingesperrten“ Polysulfidionen ab, im Einzelnen sind es Polysulfid-Radikalionen, das gelbgrüne  , das blaue   und das rote  .[18]

Eine Besonderheit der Ultramarinpigmente ist ihre hohe Farbstabilität. Die freien Polysulfid-Radikalanionen sind an sich nicht stabil gegen Luft. In den „Sodalith-Käfigen“ sind sie jedoch vor chemischen Angriffen (insbesondere durch Sauerstoff) geschützt. Die Farbzentren bleiben dadurch erhalten. Der physikalische Vorgang der Absorption beruht hier auf Elektronenvorgängen, die die anorganische Matrix nicht beeinflussen.

Der Brechungsindex von Ultramarinblau beträgt 1,5.[19]

Chemische Formeln[1]

  • C.I. Pigment Blue 29 (77007) mit einer molaren Masse von 916 bis 1026 g/mol
    • Ultramarinblau hell: Na6Al6Si6O24S2
    • Ultramarinblau mittel: Na7Al6Si6O24S3
    • Ultramarinblau dunkel: Na8Al6Si6O24S4
  • C.I. Pigment Violet 15 (77007) mit einer molaren Masse von 874 bis 918 g/mol
    • Ultramarinrosa: H2Na4Al6Si6O24S2
    • Ultramarinrosa: H2Na6Al6Si6O24S2

Weitere FaktenBearbeiten

LiteraturBearbeiten

  • A. Kurella, I. Strauss: Lapislazuli und natürliches Ultramarin. In: Maltechnik-Restauro. 1983, S. 34–54.
  • S. Muntwyler: Ultramarin. Das Pigment von jenseits der Meere. In: C. Cattaneo, S. Muntwyler, M. Rigert, H. P. Schneider (Hrsg.): Farbpigmente, Farbstoffe, Farbgeschichten. 2. Auflage. Alata Verlag, Winterthur 2011, ISBN 978-3-033-02968-2.
  • T. Seilnacht: DVD-ROM Chemie, Lexikon der Farbstoffe und Pigmente, Seilnacht Verlag & Atelier, Bern 2017.

WeblinksBearbeiten

EinzelnachweiseBearbeiten

  1. a b Temple C. Patton: Pigment Handbook. John Wiley Sons, New York/ London/ Sydney/ Toronto 1973, S. 409 ff.
  2. Ultramarin: ein Pigment – viele Qualitäten (Memento des Originals vom 8. Mai 2013 im Internet Archive)  Info: Der Archivlink wurde automatisch eingesetzt und noch nicht geprüft. Bitte prüfe Original- und Archivlink gemäß Anleitung und entferne dann diesen Hinweis.@1@2Vorlage:Webachiv/IABot/kremer-pigmente.de
  3. ultramarine (in engl.)
  4. Fra Angelico Blau in Seilnachts Lexikon der Farbstoffe und Pigmente.
  5. Eintrag zu Ultramarin-Pigmente. In: Römpp Online. Georg Thieme Verlag, abgerufen am 12. Juni 2014.
  6. Ultramarin blau_mittel
  7. Pigmente Ultramarin rot
  8. Pigmente Ultramarin violett
  9. Fra Angelico Blau in Seilnachts Lexikon der Farbstoffe und Pigmente.
  10. Ravi Mangla: True Blue: A brief history of ultramarine. In: the Paris Review. 8. Juni 2015, abgerufen am 13. Juni 2015 (englisch).
  11. Fritz Seel, Gisela Schäfer, Hans-Joachim Güttler, Georg Simon: Das Geheimnis des Lapis Lazuli. In: Chemie in unserer Zeit. Band 8, Nr. 3, 1974, S. 65–71, doi:10.1002/ciuz.19740080302.
  12. Friedrich Wilhelm Heyne: Abhandlung über die chemisch-technische Bereitung von Ultramarin-Farben nach der Erfindung von Leykauf und Heyne oder über die Wichtigkeit der Blau- und Grün-Ultramarinfabrikation für Wissenschaft, Kunst und Gewerbe. Campe, Nürnberg 1840. (Digitalisierte Ausgabe der Universitäts- und Landesbibliothek Düsseldorf)
  13. Pressedienst des Deutschen Patent- und Markenamts: 125 Jahre Deutsches Patent- und Markenamt. (Memento vom 7. März 2005 im Internet Archive)
  14. Ultramarinblau in Seilnachts Lexikon der Farbstoffe und Pigmente.
  15. Zhong Cao u. a.: Preparation of Acid-Resistant Ultramarine Pigment by Dense Silica Coating Process. In: Advanced Materials Research. Band 233–235, 2011, S. 246–249, doi:10.4028/www.scientific.net/AMR.233-235.246.
  16. S. Kowalak u. a.: Application of zeolites as matrices for pigments. In: Microporous and Mesoporous Materials. Band 61, 2003, S. 213–222, doi:10.1016/S1387-1811(03)00370-6.
  17. Laurenz Bock: Zum heutigen Stande der Ultramarinforschung. In: Angewandte Chemie. Band 28, Nr. 26, 1915, S. 147–152, doi:10.1002/ange.19150282603.
  18. http://ruby.chemie.uni-freiburg.de/Vorlesung/silicate_8_8.html Sodalith und Ultramarine auf der Website der Albert-Ludwigs-Universität Freiburg
  19. Ingo Klöckl: Chemie der Farbmittel: In der Malerei. Walter de Gruyter GmbH & Co KG, 2015, ISBN 978-3-11-037453-7 (google.de [abgerufen am 28. September 2016]).
  20. Ingrid Pfeiffer, Carla Orthen: Biografie. In: Oliver Berggruen, Max Hollein, Ingrid Pfeiffer (Hrsg.): Yves Klein. Kunsthalle Schirn, Frankfurt am Main, S. 222 f.