Hauptmenü öffnen
Verteilung des Nettoeinkommens in Deutschland 2008 (ALLBUS) nach Geschlecht und Geburtsmonats des Befragten.

Der Levene-Test[1] bezeichnet in der Statistik einen Signifikanztest, der auf Gleichheit der Varianzen (Homoskedastizität) von zwei oder mehr Grundgesamtheiten (Gruppen) prüft. Der Brown–Forsythe Test ist aus dem Levene-Test abgeleitet. Er stammt von Howard Levene.

Ähnlich dem Bartlett-Test prüft der Levene-Test die Nullhypothese darauf, dass alle Gruppenvarianzen gleich sind. Die Alternativhypothese lautet demnach, dass mindestens ein Gruppenpaar ungleiche Varianzen besitzt (Heteroskedastizität):

Nullhypothese:
Alternativhypothese:   für mindestens ein Gruppenpaar mit

Befindet sich der p-Wert des Tests unter einem zuvor bestimmten Niveau, so sind die Unterschiede in den Varianzen der Stichproben überzufällig (signifikant) und die Nullhypothese der Varianzgleichheit kann abgelehnt werden.[2]

BeispielBearbeiten

Die Grafik oben zeigt die Verteilung des Nettoeinkommens nach Geschlecht und Geburtsmonat. Die Ausgabe von car::leveneTest in R:

  • Der Levene-Test nach Geschlecht ergibt einen p-Wert kleiner als   und ist damit hochsignifikant:
Levene’s Test for Homogeneity of Variance
        Df F value Pr(>F)
group 1  106.09 < 2.2e-16 ***
      2404
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Bei einem solchen p-Wert kann davon ausgegangen werden, dass die Varianzen in der Population unterschiedlich sind. Die Nullhypothese gleicher Varianzen wird entsprechend verworfen.

  • Der Levene-Test nach Geburtsmonat ergibt einen p-Wert von   und ist bei einem vorgegebenen Signifikanzniveau von 5 % nicht signifikant:
Levene’s Test for Homogeneity of Variance
        Df F value Pr(>F)
group 11  1.6621  0.076.
      2384
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

TeststatistikBearbeiten

Sind   (  und  ) die Stichprobenvariablen und

 

mit   Anzahl der Gruppen (Stichproben),   die Anzahl der Beobachtungen in Gruppe   und   der Stichprobenmittelwert der Gruppe  . Dann ist die Teststatistik

 

annähernd  -verteilt mit   die Anzahl aller Beobachtungen:

 ,

  der Stichprobenmittelwert über alle Gruppen und   der Stichprobenmittelwert über Gruppe  .

Die Teststatistik bzgl.   ist identisch mit der Teststatistik der einfachen Varianzanalyse (Test auf Gleichheit von   Gruppenmittelwerten). Durch die Transformation von   auf   sind die Gruppenmittelwerte

 

robuste Schätzfunktionen der Gruppenvarianzen. Die Normalverteilungsannahme für die Varianzanalyse gilt zwar nicht, jedoch haben die   oft eine rechtsschiefe Verteilung für die die Varianzanalyse angewandt werden kann.[3]

Brown–Forsythe-TestBearbeiten

Im Brown–Forsythe-Test wird bei Berechnung von   statt des Gruppenmittelwertes der Gruppenmedian benutzt.[4] Um eine gute Teststärke zu erhalten, muss der Lageparameter in Abhängigkeit von der zugrunde liegenden Verteilung gewählt werden. Brown und Forsythe zeigten in Simulationsstudien, dass der Mittelwert eine gute Wahl ist, wenn die Verteilung symmetrisch und „normale“ Verteilungsenden (Exzess   0) hat, z. B. einer Normalverteilung ähnlich ist. Der Median sollte benutzt werden, wenn die Verteilungen stark schief sind, und der getrimmte Mittelwert, wenn die Verteilung schwere Verteilungsenden hat (Exzess<0).

EinzelnachweiseBearbeiten

  1. Howard Levene: Robust tests for equality of variances. In: Ingram Olkin, Harold Hotelling et al. (Hrsg.): Contributions to Probability and Statistics: Essays in Honor of Harold Hotelling. Stanford University Press, 1960, S. 278–292..
  2. Jürgen Janssen, Wilfried Laatz: Statistische Datenanalyse mit SPSS für Windows. 8. Auflage. Springer Verlag, 2007, S. 246.
  3. Maxwell J. Roberts, Riccardo Russo: Student’s Guide to Analysis of Variance. Routledge Chapman & Hall, 1999, ISBN 978-0-415-16565-5, S. 71.
  4. Morton B. Brown, Alan B. Forsythe: Robust tests for equality of variances. In: Journal of the American Statistical Association. Band 69, 1974, S. 364–367, doi:10.1080/01621459.1974.10482955.

LiteraturBearbeiten

  • Biostatistik: Eine Einführung für Biowissenschaftler. (2008). München: Pearson Studium. S. 150–154.