Elektronengas

(Weitergeleitet von Leitungselektronen)

In der Festkörperphysik bezeichnet der Begriff Elektronengas eine Modellvorstellung für die frei beweglichen Elektronen im Leitungsband bzw. Löcher im Valenzband von Metallen oder Halbleitern. Im Rahmen dieses Modells werden die frei beweglichen Elektronen als Grund für die Leitfähigkeit von Metallen verstanden, und der elektrische Widerstand wird durch die Streuung von Elektronen an Phononen und Kristall-Fehlstellen beschrieben.

Das Elektronengas ist kein Gas im chemischen Sinn, sondern ein quantenmechanisches Fermigas.

Das Modell des Elektronengases wurde ursprünglich von Arnold Sommerfeld für das Verständnis der elektrischen Leitung in Metallen entwickelt, wodurch es auch die Bezeichnung Sommerfeld-Theorie hat. Im Unterschied zur bis dahin als gültig angesehenen Drude-Theorie, welche die Leitungselektronen als klassisches ideales Gas betrachtet, beschreibt Sommerfeld die Leitungselektronen in einem Metall als quantenmechanisches Fermi-Gas. Die Sommerfeld-Theorie erklärt insbesondere, dass der Beitrag der Elektronen zur spezifischen Wärme eines Metalls gegenüber dem Beitrag der Atomrümpfe vernachlässigt werden kann, so dass das experimentell gefundene Dulong-Petit-Gesetz über die spezifische Wärme monoatomarer Festkörper gilt. Dagegen ist die Drude-Theorie mit diesem Gesetz nicht vereinbar.

Die Sommerfeld-Theorie erklärt auch, dass der Anteil der Elektronen an der spezifischen Wärme proportional zur Temperatur steigt. Außerdem ergibt sie den korrekten Wert der Proportionalitätskonstante im Wiedemann-Franz-Gesetz und die Größenordnung der Thermokraft beim Seebeck-Effekt.[1]

Das ursprüngliche Sommerfeld-Modell konnte mit Hilfe der Überlegungen der Fermi-Flüssigkeits-Theorie relativ einfach, aber signifikant verbessert werden. Der Einfluss des Gitters der Atomrümpfe wird dann dadurch berücksichtigt, dass man anstelle der freien Elektronenmasse eine effektiven Masse verwendet. Eine Erklärung für das Auftreten der effektiven Masse konnte es aber nicht liefern, da hierzu die Entwicklung des Bloch’schen Bändermodells notwendig wurde.

Delokalisierte MateriewellenBearbeiten

In einen quantenmechanischen Fermi-Gas werden zum einen die Teilchen durch Materiewellen in Form von ebenen Wellen beschrieben, welche den Impuls bzw. die Geschwindigkeit mit der Wellenlänge bzw. dem Wellenvektor linear über verknüpft. Zum anderen können wegen des Pauli-Prinzips die einzelnen Teilchen nicht denselben Impuls annehmen. Das bedeutet, dass in einem Fermig-Gas alle Elektronen unterschiedliche Geschwindigkeiten in Abhängigkeit der Temperatur besitzen müssen. Die Elektronen gehorchen auch nicht mehr der klassischen Bolzmann-Verteilung, sondern der quantenmechanischen Fermi-Verteilung. Die Fermi-Verteilung geht aber beim absoluten Nullpunkt in eine Stufenfunktion über, welche unabhängig von der Temperatur alle Geschwindigkeiten kontinuierlich, aber gleichmäßig verteilt. Jedes Teilchen besitzt aber in der Sommerfeld-Theorie weiterhin die klassische rein quadratische Abhängigkeit der kinetischen Energie von der Geschwindigkeit, eben die klassische Dispersionsrelation freier Elektronen. Bei Temperaturen sehr nahe an Null Kelvin füllen die Elektronen daher im Impulsraum eine Kugel (Fermi-Kugel) in erster Näherung aus. Der Radius dieser Kugel ist der der Fermi-Energie zugehörige Impuls Elektronen im Leitungsband sind delokalisiert, d. h., sie lassen sich keinem bestimmten Gitteratom zuordnen, wie dies in chemischen Verbindungen der Fall ist. Anders ausgedrückt hat solch ein Elektron an jedem Gitteratom eine nichtverschwindende Aufenthaltswahrscheinlichkeit, ist also über den gesamten Kristall verteilt. Die kinetische Energie   und der (quantenmechanische) Wellenvektor   eines freien, nicht wechselwirkenden Elektrons hängen zusammen über die Dispersionsrelation

 

Relationen dieser Art bestimmen die Bandstruktur im Wellenvektorenraum. Das beschriebene so genannte freie Elektronengas (mit dem parabolischen Band) ist nur ein einfaches Modell zur Beschreibung für die Elektronen im Leitungsband. In komplizierteren Modellen (z. B. Näherung quasi-freier Elektronen oder Tight-Binding-Modell), die die Wirklichkeit besser beschreiben, wird das periodische Potenzial des Kristalls berücksichtigt, was zu komplexeren Bandstrukturen führt. Diese können jedoch in erster Näherung um   auch durch obige parabolische Dispersion beschrieben werden, wenn für   die effektive Masse des jeweiligen Bandes gesetzt wird.

Da Elektronen Fermionen sind, können keine zwei Elektronen in allen Quantenzahlen übereinstimmen. Dadurch sind die Energieniveaus bei Temperatur   von   (Nullpunktenergie) her aufgefüllt bis zur Fermi-Energie. Die Verteilung der Energie wird durch die Fermi-Dirac-Statistik beschrieben, die bei   an der „Fermikante“ in einem Bereich der Breite   aufgeweicht ist.

Entartetes ElektronengasBearbeiten

Als entartet bezeichnet man ein Elektronengas, wenn die (weitgehend temperaturunabhängige) Fermi-Energie   der Elektronen in einem Potentialkasten viel größer ist als die absolute Temperatur  , multipliziert mit der Boltzmannkonstanten  :

 

Insbesondere ist jedes Elektronengas entartet bei  . Die Bezeichnung entartet ist so zu verstehen, dass nahezu alle Zustände die gleiche Wahrscheinlichkeit haben, besetzt zu sein. Die Verteilungsfunktion ist über einen (verglichen mit der Fermi-Kante) großen Bereich konstant.

Zahlenbeispiele:

  • für die Leitungselektronen in Kupfer gilt (bei Raumtemperatur):  
  • für die Elektronen im Zentrum Weißer Zwerge gilt (trotz hoher Temperatur):  
  • für die Elektronen im Zentrum der Sonne beträgt das Verhältnis dagegen:   (also nicht-entartet).

Siehe auchBearbeiten

LiteraturBearbeiten

  • Charles Kittel: Einführung in die Festkörperphysik, Oldenbourg, 11. Auflage 1996, ISBN 3-486-23596-6
  • Arnold Hanslmeier: Einführung in Astronomie und Astrophysik, Spektrum Akademischer Verlag, 2. Auflage 2007, ISBN 978-3-8274-1846-3
  • Neil W. Ashcroft, N. D. Mermin: Solid State Physics. Saunders College Publishing, New York 1976. Kapitel 2
  • A. Sommerfeld, H. Bethe: Elektronentheorie der Metalle. In: Handbuch der Physik. Vol. 24-2. Springer Verlag, Heidelberg 1933, S. 333–622.

EinzelnachweiseBearbeiten

  1. Wissenschaft-Online-Lexika: Eintrag zur Sommerfeld-Theorie der Metalle im Lexikon der Physik. Abgerufen am 23. August 2009.