Kleinwinkelnäherung

Vereinfachung der trigonometrischen Funktionen für kleine Winkel

Unter der Kleinwinkelnäherung wird die mathematische Näherung verstanden, bei der angenommen wird, der Winkel sei so hinreichend klein, dass man seinen Sinus oder Tangens durch den Winkel selbst (in Radiant) und den Kosinus durch ersetzen kann:

Annähernd gleiches Verhalten einiger (trigonometrischer) Funktionen für x → 0

HerleitungBearbeiten

Grundlage dieses Ansatzes ist die jeweilige Maclaurinsche Reihe der Winkelfunktion (siehe auch Taylor-Reihe):

 
 
 

Für   kann man die Summanden mit höherer Potenz von   vernachlässigen gegenüber den vorhergehenden Gliedern, so dass sich die o. g. Näherungen ergeben.

Beispiele: Sinus-Näherung und Abweichung
  in Grad  (deg)      
  in Radiant (rad) statt        
       
Relative Abweichung      

Tabelle der relativen Abweichung bzw. Fehlergrenze der jeweiligen Näherung bei den angegebenen Winkeln:

Relative Abweichung Sinus, Tangens und Cosinus
Näherung      
  statt        
  statt        
  statt        

AnwendungenBearbeiten

Wichtig ist die Kleinwinkelnäherung besonders in der Physik, wo sich viele Probleme mit Hilfe der Kleinwinkelnäherung analytisch exakt lösen lassen, die ansonsten unter Einbeziehung der Winkelfunktionen zu komplizierten elliptischen Integralen führen würden. Anwendungsbeispiele der Kleinwinkelnäherung sind das mathematische Pendel, die Auswertung der Beugung am Spalt, die paraxiale Optik sowie die Annäherung von Parabel und Kreisbogen bei der Behandlung bei Linsen und Hohlspiegeln in der Nähe der optischen Achse.

Moderate Winkeländerungen > 7°Bearbeiten

In der technischen Mechanik ist ebenfalls die Berücksichtigung moderater Winkeländerungen üblich. Um zu vermeiden, dass der Kosinus bei der Kleinwinkelapproximierung komplett herausfällt, wird zusätzlich das zweite Glied der Taylorreihenentwicklung berücksichtigt, sodass gilt:

 .

Ein Anwendungsbeispiel ist die Theorie leicht gekrümmter Schalentragwerke: Da die Krümmung das Tragverhalten maßgeblich beeinflusst, muss diese berücksichtigt werden; gleichzeitig soll die Approximation den Berechnungsaufwand verringern.

Durch die genauere Näherung ergeben sich nun folgende Eigenschaften:

Relative Abweichung bei
Näherung      
  statt        

LiteraturBearbeiten