Hauptmenü öffnen
Eisbohrkern wird aus dem Hohlkernbohrer entnommen

Ein Eisbohrkern ist ein Bohrkern, der in der Regel durch eine Bohrung in einem Eisschild oder Gletscher gewonnen wurde. Eisbohrkerne sind wichtige Klimaarchive, durch ihre Analyse ist es möglich, Informationen über das Klima der Vergangenheit zu erhalten.

Diese Art der Klimadatenerfassung ist eine sehr junge, aber zugleich eine der wichtigsten und genauesten Methoden, die heute bekannt sind. Bei dieser Methode werden Bohrungen in die riesigen Landeisschilde der Erde, in die Kryosphäre (das Eis der Erde), unternommen. Die dann zu Tage geförderten Eisbohrkerne werden genau untersucht.

Inhaltsverzeichnis

EntwicklungBearbeiten

Der erste Versuch, im Innern eines Eisschildes eine Probe zu entnehmen, geht auf den deutschen Polarforscher Ernst Sorge zurück. An der Station Eismitte in Zentralgrönland untersuchte er 1930/1931 in einer 15 m tiefen Grube das Eis. Die ersten Eisbohrkerne gewannen etwa 20 Jahre später drei verschiedene internationale Forscherteams: die Norwegisch-Britisch-Schwedische Antarktisexpedition an der Küste des Königin-Maud-Land, das Juneau Icefield-Forschungsprojekt in Alaska und die französischen Polarexpeditionen in Zentralgrönland. Diese Eisbohrkerne der frühen 50er Jahre waren etwa 100 m lang und erlaubten noch keine detaillierten Analysen.[1]

Als eigentlichen Beginn der Forschung mittels Eisbohrkernen nennt der französische Klimatologe und Glaziologe Jean Jouzel das Internationales Geophysikalisches Jahr 1957/1958. Eine Priorität der in dem Jahr begründeten Kooperationen war die Gewinnung tiefer Kerne aus den polaren Eisschilden. Im Herbst 1960 begannen Arbeiten in Camp Century im Nordwesten Grönlands, die nach sechs Jahren den ersten ununterbrochenen Eisbohrkern bis auf den Felsboden in 1388 m Tiefe trieben. Das Bohrgerät wurde vom Cold Regions Research and Engineering Laboratory (CRREL) der U.S. Army bereitgestellt. Anschließend gelang es in der Westantarktis, mit demselben Gerät bis 1968 mit einem Bohrkern in der Nähe der Byrd-Station bis in 2164 m Tiefe vorzudringen.

In den frühen 1970er Jahren wurde das Greenland Ice Sheet Project (GISP) geboren, unter Leitung eines Teams der Universität Kopenhagen. Mit einem neu entwickelten Bohrer namens Istuk erreicht das Projekt in drei Feldkampagnen, 1979 – 1981, bei Dye 3 in 2038 m Tiefe anstehendes Gestein.[1]

In der zentralen Ostantarktis begannen im April 1970 sowjetische Forscher nahe der Wostok-Station mit Bohrungen und erreichten im September des gleichen Jahres eine Tiefe von knapp 507 m. Dort wurde schließlich 1998 auch der 3623 m lange Vostok-Eiskern gewonnen, der 420.000 Jahre in die Vergangenheit zurückreicht. Im Februar 2012 stieß das Projekt in 3769 m Tiefe zum Wostoksee durch.[1]

Ein französisches Team führte, nach ersten Bohrungen im ostantarktischen Adélieland, Ende der 1970er Jahre eine 905 m tiefe Bohrung an der Station Dome Concordia (Dome Charlie) in der zentralen Ostantarktis durch. Dieser Ort, auf einer Kuppe des Eisschildes, erlaubte eine einfachere Interpretation der gewonnenen Daten, denn die Akkumulation des Gletschereis erfolgt vertikal und weist kaum seitliche Fließbewegungen auf. Damit kann angenommen werden, dass eingelagertes Eis auch an diesem Ort entstanden ist. Die Australian National Antarctic Research Expeditions bohrten am Law Dome, im ostantarktischen Wilkesland, und am Dome Summit, wo sie 1993 das Gestein erreichten.[1]

Die bei Camp Century und Dye 3 gewonnenen grönländischen Bohrkerne zeigten zwar eine Folge abrupter Klimaschwankungen, lieferten aber keine ausreichenden Informationen über das letzte Interglazial, die Eem-Warmzeit (vor 115.000–126.000 Jahren). Der dänische Paläoklimatologe Willi Dansgaard und sein US-amerikanischer Kollege Wallace Broecker initiierten daher zwei neue Bohrungen, die zeitgleich und unweit voneinander stattfinden sollten. Das europäisches Greenland Ice Core Project (GRIP) fand in den Jahren 1990–1992 von der höchsten Stelle des Eisschildes aus statt und erreichte eine Tiefe von fast 3029 m, das 28 km westlich gelegene amerikanische Greenland Ice Shield Project 2 (GISP2, 1990–1993) endete bei 3054 m. Aufgrund von Faltungen des Eises über dem unebenen Felsboden erwiesen sich Schichten mit einem Alter von mehr als 105.000 Jahren in beiden Projekt als nicht verlässlich. Dies motivierte eine weitere Bohrung, das New Greenland Ice Shield Project (NGRIP) etwa 200 km nördlich über ebenem Fels in den Jahren 1996–2003. Es gelang, einen 123.000 Jahre, also bis in die Mitte des Eem zurückreichenden Bohrkern zu gewinnen. Um Informationen über das gesamte Eem zu erhalten, schloss sich das Projekt North Greenland Eemian ice drilling (NEEM, bis Juli 2010) weiter im Norden Richtung Camp Century an. In diesem Eis konnte eine Sequenz datiert werden, die 128.500 Jahre in die Vergangenheit reicht und damit auch teilweise den Wechsel vom vorletzten Glazial (→ Saale-Kaltzeit) zum Eem dokumentiert.[1]

LandeisschildeBearbeiten

 
Grönländischer Eisbohrkern

Von Jahr zu Jahr setzt sich eine neue Schicht Eis ab, eine so genannte Jahresschicht. Somit besteht ein solcher Landeisschild aus vielen übereinander liegenden Schichten Eis. Bohrungen werden dabei typischerweise am Scheitel solcher Eisschilde durchgeführt, der sogenannten Eisscheide, um möglichst nur vertikale Bewegungen des Eises ohne Störungen durch seitliche Fließbewegungen anzutreffen.[2]

Solche riesigen Eisschilde sind vor allem in der Antarktis und in Grönland zu finden. Einige haben eine Dicke von über 3000 m und sind mehrere hunderttausend Jahre alt. Allerdings werden auch Untersuchungen in polaren und gemäßigten Klimazonen und in den Tropen auf Gletschern durchgeführt. Ein Beispiel dafür ist der Gletscher auf dem Kilimandscharo. Die alpinen Gletscher liefern eher Informationen über das regionale Klimageschehen, während Bohrungen an den polaren Eisschilden Informationen über das globale Klima der letzten Jahrhunderttausende liefern.

Der erste 100 Meter lange Eiskern wurde während einer norwegisch-britisch-schwedischen Antarktis-Expedition gezogen, die in den Jahren 1949 bis 1952 stattfand. Den bisher tiefsten Bohrkern des grönländischen Inlandeises erbrachte die europäische Tiefbohrung NGRIP (North Greenland Ice Core Project) im Jahre 2003. Hier wurde eine Bohrtiefe von 3085 Meter erreicht, das älteste Eis ist 123.000 Jahre alt und stammt aus der letzten Warmzeit vor der heutigen, der Eem-Warmzeit. Der älteste Bohrkern überhaupt stammt aus der Antarktis aus dem europäischen Project EPICA (European Project for Ice Coring in Antarctica) 2004. Das Eis in 3270,2 Metern Tiefe ist ca. 900.000 Jahre[3] alt und enthält damit Informationen von mehr als acht Eiszeit-Zyklen.

AnalysenBearbeiten

Je tiefer eine Jahresschicht im Eis liegt, desto älter und dünner ist sie, da das Gewicht der darüber liegenden Schichten sie zusammendrückt und zur Seite fließen lässt. Untersucht man diese einzelnen Schichten, kann man sehr genaue Informationen zu ganz bestimmten Jahren herausfinden, indem man die Schichten von oben abzählt. Die Dicke der einzelnen Jahresschichten gibt dabei Hinweise auf die jeweilige Niederschlagsmenge.

Ein Bohrkern wird unter Einhaltung genauer Sauberkeit untersucht. Hinweise auf Ereignisse werden sowohl im Hinblick auf den Zeitpunkt ihres Auftretens, wie auch auf eine gegebenenfalls vorhandene, zeitliche Periodizität hin untersucht. Eisbohrkerne werden immer verglichen, d. h., es wird geprüft, ob sich ein Ereignis in einem anderen, ggf. an ganz anderer Stelle gewonnenen Eisbohrkern, der Spuren aus derselben Zeit zeigt, wiederfinden lässt.[4]

GasanalysenBearbeiten

In kleinen Luftbläschen findet man auch heute noch Luft, die vor Jahrtausenden eingeschlossen wurde. Von Interesse sind Spurengase, deren Anteil in der Luft weit weniger als 1 % beträgt. Untersucht werden die Konzentrationen von Kohlenstoffdioxid und Methan, da diese in ihrer Rolle als Treibhausgase einen wichtigen Einfluss auf das damals herrschende Klima hatten. Die Analyse der Berylliumisotope und Kohlenstoffisotope (des CO2) lässt auf die damalige Sonnenaktivität schließen. Eine Temperaturanalyse geschieht unter anderem mit Hilfe des δ18O-Signals. Daneben wird auch das Verhältnis von 2H /1H (Deuterium/Wasserstoff) bestimmt, was zusätzliche Informationen über Verdunstungs- und Kondensationstemperaturen vermittelt. Auf diese Weise ist es möglich, aus Eisbohrkernen die Entstehungstemperatur des Niederschlags und damit die Lufttemperatur in den Polargebieten der Erde über die letzten ca. eine Million Jahre zu rekonstruieren. Das Verhältnis von 3He zu 4He gibt Hinweise auf Änderungen der Ausrichtung des Erdmagnetfeldes. Die Analyse des eingeschlossenen 81Kr ist das einzige Verfahren, mit dem man Eis datieren kann, das älter als 50.000 Jahre ist.[4]

Analyse eingeschlossener FeststoffeBearbeiten

 
Antarktischer Eisbohrkern im polarisierten Licht (AWI)

Staubgehalt, Ionen- bzw. bestimmte Elementkonzentrationen lassen Rückschlüsse auf den Zustand der atmosphärischen Zirkulation bzw. der zu dieser Zeit vorherrschenden mittleren Windstärke zu.

In Eisbohrkernen gefundene Staubschichten stammen manchmal von Vulkanausbrüchen, die bisweilen Auslöser von Klimaveränderungen waren. Eine Datierung der Ausbrüche mit Hilfe von Eisbohrkernen ist erheblich genauer als die Radiokohlenstoffdatierung. Die Leitfähigkeit des Eises liefert Informationen über die Menge vulkanischer Ablagerungen vergangener Ausbrüche. Petrografisch wird Glas vulkanischen Ursprungs mit Elektronenmikroskopen und Sekundärionen-Massenspektrometern untersucht. Die spezifische Konzentration bestimmter Oxide und Spurenelemente kann anschließend mit Proben in Frage kommender Vulkanausbrüche verglichen und zugeordnet werden. Hierbei wird nicht nur mit einer zeitlichen Auflösung von Dekaden und Jahrhunderten untersucht, ob ein Vulkanausbruch klimarelevante Folgen hatte; es wird auch umgekehrt geprüft, ob die Auswirkungen einer Klimaveränderung – wie beispielsweise eine Entgletscherung – einen nachweisbaren Einfluss auf die vulkanische Aktivität hatte.[4]

Daneben kann festgestellt werden, ob gefundene Staubkörnchen terrestrischen oder extraterrestrischen Ursprung haben und ggf. von Meteoriten- bzw. Mikrometeoriteneinschlägen stammen. Es werden Spuren von Iridium und Osmium gesucht. Das Verhältnis von 187Os / 186Os entscheidet, ob die Partikel vulkanischen Ursprung haben oder einem Meteoriteneinschlag zuzuordnen sind. Stammen die Elemente aus der Erdkruste, ist dieses Verhältnis 400 zu 1, bei Meteoriten ist es 3 zu 1.[5]

Andere Stoffe liefern Hinweise auf die Umweltgeschichte und den Einfluss des Menschen. In den grönlandischen Eislagen, die in dem Zeitraum 1100 v. Chr. – 800 n. Chr. datieren, finden sich zum Beispiel Schwermetalle wie Blei, die bei der Silbergewinnung in Europa und dem Mittelmeerraum eingesetzt wurden und mit Luftströmungen nach Norden transportiert und im Eisschild eingelagert worden sind. Jahresgenau datierte Bleikonzentrationen korrespondieren eng mit der Wirtschaftsgeschichte der europäischen Antike, etwa Krisen des römischen Reiches oder dem Silbergehalt römischer Münzen.[6] In Bohrungen im arktischen Meereis aus den Jahren 2014 und 2015 wurden pro Liter Eis zwischen 33 und 75.143 Mikroplastik-Teilchen gefunden.[7]

Siehe auchBearbeiten

LiteraturBearbeiten

  • Willi Dansgaard: Frozen Annals – Greenland Ice Sheet Research. 2005, ISBN 87-990078-0-0 (ku.dk [PDF; 6,8 MB]).
  • J. Jouzel: A brief history of ice core science over the last 50 yr. In: Climate of the Past. November 2013, doi:10.5194/cp-9-2525-2013.
  • Chester C. Langway: The History of early Polar Ice Cores (= Technical Reports. TR-08-01). Januar 2008 (ku.dk [PDF; 5,6 MB]).

WeblinksBearbeiten

  Commons: Eisbohrkerne – Sammlung von Bildern, Videos und Audiodateien

EinzelnachweiseBearbeiten

  1. a b c d e Jean Jouzel: A brief history of ice core science over the last 50 yr. In: Climate of the Past. November 2013, doi:10.5194/cp-9-2525-2013.
  2. Universität Jena; M. Pirrung, M. Kunz-Pirrung, L. Viereck-Götte; Eisschilde und Eiskernarchive (Memento vom 11. Juni 2007 im Internet Archive)
  3. Alfred Wegener Institut, Projekt EPICA (Memento vom 25. Februar 2009 im Internet Archive)
  4. a b c Hintergrundinformationen auf der Website des GISP2-Projekts.
  5. GISP2 Notebook 2
  6. Joseph R. McConnell u. a.: Lead pollution recorded in Greenland ice indicates European emissions tracked plagues, wars, and imperial expansion during antiquity. In: Proceedings of the National Academy of Sciences. 29. Mai 2018, doi:10.1073/pnas.1721818115.
  7. Ilka Peeken, Sebastian Primpke, Birte Beyer, Julia Gütermann, Christian Katlein, Thomas Krumpen, Melanie Bergmann, Laura Hehemann & Gunnar Gerdts: Arctic sea ice is an important temporal sink and means of transport for microplastic. In: Nature Communications. 2018, doi:10.1038/s41467-018-03825-5.