Hauptmenü öffnen

Cystin ist eine chemische Verbindung. Es handelt sich um ein Disulfid, das aus zwei Molekülen der proteinogenen α-Aminosäure Cystein durch Oxidation ihrer Sulfhydrylgruppen (–SH) entsteht.

Strukturformel
Struktur von Cystin
Strukturformel von (natürlichem) L-(–)-Cystin
Allgemeines
Name Cystin
Andere Namen
  • (R,R)-Cystin
  • L-(–)-Cystin
  • IUPAC: (2R,2′R)-3,3′-Dithiobis(2-amino-propansäure)
Summenformel C6H12N2O4S2
Kurzbeschreibung

weißes Pulver mit schwachem Eigengeruch[1]

Externe Identifikatoren/Datenbanken
CAS-Nummer 56-89-3 (L-Cystin)
EG-Nummer 200-296-3
ECHA-InfoCard 100.000.270
PubChem 67678
DrugBank DB00138
Wikidata Q408626
Arzneistoffangaben
ATC-Code

V06DD

Wirkstoffklasse

Aminosäure

Eigenschaften
Molare Masse 240,30 g·mol−1
Aggregatzustand

fest

Schmelzpunkt

260–261 °C (Zersetzung) [2]

pKs-Wert

1[2]

Löslichkeit

sehr schlecht in Wasser (190 mg·l−1 bei 20 °C)[2]

Sicherheitshinweise
Bitte die Befreiung von der Kennzeichnungspflicht für Arzneimittel, Medizinprodukte, Kosmetika, Lebensmittel und Futtermittel beachten
GHS-Gefahrstoffkennzeichnung [1]
keine GHS-Piktogramme
H- und P-Sätze H: keine H-Sätze
P: keine P-Sätze [1]
Toxikologische Daten

25000 mg·kg−1 (LD50Ratteoral)[2]

Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet. Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen.

L-Cystin [Synonym: (R,R)-Cystin] ist das natürlich vorkommende Enantiomer. Gemeinhin ist L-Cystin gemeint, wenn der Ausdruck Cystin ohne Deskriptor gebraucht wird.

Entdeckung und natürliches VorkommenBearbeiten

Das natürlich vorkommende Cystin wurde 1810 von William Hyde Wollaston als „cystic oxide“ in Blasensteinen entdeckt, erst 74 Jahre später das monomere Cystein. Die schwefelhaltige Aminosäure findet sich in hoher Konzentration peptidisch gebunden auch in den Zellen des Immunsystems, der Haut und insbesondere den Haaren.

 
Haare sind aus Keratin aufgebaut, dessen Proteine bis zu 17 % L-Cystein enthalten, das Disulfidbrücken ausbilden kann. (Gemälde von Sophie Gengembre Anderson (1823–1903): Mädchen mit langem Haar)

So enthalten Keratine, die Faserproteine der Hornsubstanz, von Haaren, Borsten oder Federn etwa 11 % L-Cystin.[3] Es entsteht durch Ausbildung von Disulfidbrücken zwischen L-Cystein-Seitenketten in verschiedenen Proteinabschnitten. Je stärker ihre Faserkomponenten damit quervernetzt werden, desto steifer werden die Keratinfasern. Das gebundene Cystin wird hier aus den im Polypeptid gebundenen Cystein-Bausteinen gebildet, nicht durch Einbau von freiem Cystin.

Daneben kommen auch Nierensteine vor, die aus L-Cystin bestehen.

IsomerieBearbeiten

Cystin ist chiral, da es zwei Stereozentren enthält. Nur ein Enantiomer, das L-Cystin [Synonym: (R,R)-Cystin], kommt natürlich vor. Dessen Spiegelbild, D-Cystin [Synonym: (S,S)-Cystin], besitzt ebenso wie das dritte Stereoisomer, das meso-Cystin, keine praktische Bedeutung.

Isomere von Cystin
Name L-Cystin D-Cystin meso-Cystin
Andere Namen (R,R)-Cystin

(–)-Cystin

(S,S)-Cystin

(+)-Cystin

(R,S)-Cystin

(S,R)-Cystin

Strukturformel      
CAS-Nummer 56-89-3 349-46-2 6020-39-9
923-32-0 (DL)
EG-Nummer 200-296-3 206-486-2
213-094-5 (DL)
ECHA-Infocard 100.000.270 100.005.897
100.011.904 (DL)
PubChem 67678 6857538 6991966
595 (DL)
Wikidata Q408626 Q27116494 Q27282385
Q27102343 (DL)

Herstellung und GewinnungBearbeiten

Meist wird L-Cystin für die Verwendung in der Lebensmittelindustrie heute fermentativ hergestellt. Hierbei kommen genetisch modifizierte Bakterien vom Typ Escherichia coli zum Einsatz. Das von den Mikroorganismen gebildete L-Cystin kann anschließend aufgereinigt und kristallisiert werden. Da lediglich die Bakterienstämme, nicht aber deren Nährsubstrat gentechnisch modifiziert wurden und keine modifizierte DNA mehr im Produkt verbleibt, wird das gewonnene L-Cystin nicht als gentechnisch verändert eingestuft.

Ein zweiter Herstellungsprozess ist die saure Hydrolyse keratinhaltiger Proteine, wie Geflügelfedern, Haare und Hufe. Hierbei erhält man nach der Neutralisation ein Proteinhydrolysat, das aus den etwa 20 proteinogenen α-Aminosäuren besteht. Daraus lässt sich eine L-Cystin- und L-Tyrosin-reiche Fraktion leicht durch Abtrennung der gut wasserlöslichen Aminosäuren gewinnen, da L-Cystin- und L-Tyrosin sich nur wenig in Wasser lösen. Bis heute wird L-Cystin nach dieser einfachen Trennmethode kommerziell gewonnen.[4]

VerwendungBearbeiten

Die elektrochemische Reduktion von L-Cystin (ein Disulfid) liefert L-Cystein (ein Thiol). Aus L-Cystin werden zahlreiche Arzneistoffe im industriellen Maßstab hergestellt, z. B. (R)-S-Carboxymethylcystein und (R)-N-Acetylcystein.

Cystin kann (ebenso wie Cystein, E920) in der Mehl-Behandlung eingesetzt werden. Beide Aminosäuren verändern die Eigenschaften des Klebers in Weizenmehlteigen. Während Cystin die Kleberstruktur festigt, die Teige also weniger dehnbar macht, lockert Cystein die Kleberstruktur und macht die Teige dadurch dehnbarer.

HandelsnamenBearbeiten

Kombinationspräparate

Pantogar (A), Pantovigar (D), Priorin (A, D)

EinzelnachweiseBearbeiten

  1. a b c Datenblatt (R)-(-)-Cystin (PDF) bei Merck, abgerufen am 6. Dezember 2018.
  2. a b c d Eintrag zu Cystin in der ChemIDplus-Datenbank der United States National Library of Medicine (NLM), abgerufen am 9. August 2016.
  3. Hans-Dieter Jakubke und Hans Jeschkeit: Aminosäuren, Peptide, Proteine, Verlag Chemie, Weinheim, 1982, ISBN 3-527-25892-2.
  4. Yoshiharu Izumi, Ichiro Chibata und Tamio Itoh: Herstellung und Verwendung von Aminosäuren, Angewandte Chemie 90 (1978) 187–194.