Beweise der gödelschen Unvollständigkeitssätze

Übersicht der Beweise für die gödelschen Unvollständigkeitssätze

Dieser Artikel skizziert Beweise der Gödelschen Unvollständigkeitssätze. Dabei handelt es sich um zwei mathematische Sätze, die zu den wichtigsten Ergebnissen der Logik gezählt werden und die von Kurt Gödel 1930 bewiesen wurden.

Der erste Unvollständigkeitssatz besagt, dass kein konsistentes Axiomensystem, dessen Theoreme von einem Algorithmus aufgezählt werden können, alle wahren Aussagen über natürliche Zahlen mit Addition und Multiplikation beweisen kann. Der zweite Unvollständigkeitssatz besagt, dass ein solches System die eigene Widerspruchsfreiheit nicht beweisen kann.

Erster Unvollständigkeitssatz Bearbeiten

Der erste Unvollständigkeitssatz lässt sich wie folgt allgemein formulieren:

Sei   ein rekursiv aufzählbares und widerspruchsfreies formales System, in dem die Robinson-Arithmetik interpretierbar ist. Dann ist   unvollständig. (Es gibt also arithmetische Formeln, die in   weder beweisbar noch widerlegbar sind.)

Dabei ist die Robinson-Arithmetik (auch  ) eine schwache Form der Arithmetik in Prädikatenlogik erster Stufe. Diese verfügt über die Konstante   „null“, die Nachfolgerfunktion  , welche intuitiv zu einer gegebenen Zahl eins addiert, sowie die Funktionen   für Addition und   für Multiplikation. Sie hat folgende Axiome, die elementare Eigenschaften der natürlichen Zahlen und der arithmetischen Operationen formalisieren:

  • Null hat keinen Vorgänger:  
  • Wenn x+1 = y+1 gilt, dann ist x=y:  
  • Jede Zahl ist gleich Null oder hat einen Vorgänger:  
  • Axiomatische Definition von Addition und Multiplikation:
    •  
    •  
    •  
    •  

Die Punkte über den Ausdrücken deuten hier und im weiteren Verlauf des Artikels an, dass diese Ausdrücke zu der betrachteten Sprache gehören. So ist   (s. u.) eine Formel des betrachteten formalen Systems, während   eine Relation zwischen natürlichen Zahlen ist. Das "Numeral" einer natürlichen Zahl  , die Repräsentierung der natürlichen Zahl im System, wird mit   bezeichnet, das Numeral von 4 ist z. B.der Term  .

Im Folgenden wird angenommen, dass   die Robinson-Arithmetik selbst ist. Der Beweis lässt sich genauso für jedes andere System durchführen, in dem sich die Arithmetik so interpretieren lässt, dass sich alle Funktionen aus der Robinson-Arithmetik so durch Ausdrücke des neuen Systems definieren lassen, dass alle Theoreme der Robinson-Arithmetik in Theoreme des anderen Systems übergehen. Insbesondere wird davon ausgegangen, dass das Axiomensystem entscheidbar ist. Gödel bewies den Satz ursprünglich für das viel stärkere System der Principia Mathematica. Ebenso lässt sich der Beweis für die Zermelo-Fraenkel-Mengenlehre durchführen, die als einziges nichtlogisches Zeichen die Elementrelation   hat, in der Zahlen aber als Mengen interpretiert werden können, sodass alle Theoreme der Robinson-Arithmetik als Theoreme der Mengenlehre interpretierbar sind. Der Beweis lässt sich ebenfalls für ein lediglich aufzählbares Axiomensystem adaptieren.

Der Beweis zerfällt in vier Teile:

  1. Arithmetisierung der Syntax: Jedem Ausdruck der Theorie wird eine Zahl, die sogenannte Gödelnummer, zugewiesen, aus der sich die Formel wieder effektiv rekonstruieren lässt. Diese Nummerierung wird auf endliche Folgen von Formeln erweitert.
  2. Arithmetisierung der Beweisbarkeitsrelation: Eine Formel   wird konstruiert, sodass für jedes Paar von Zahlen   und  ,   genau dann beweisbar ist, wenn   die Gödelnummer eines Beweises einer Formel ist, deren Gödelnummer   ist.
  3. Konstruktion des Gödelsatzes: Es wird eine Formel konstruiert, die informell besagt „Ich bin nicht beweisbar.“, der sogenannte Gödelsatz.
  4. Nachweis der Unbeweisbarkeit: Es wird gezeigt, dass der Gödelsatz weder bewiesen noch widerlegt werden kann.

Arithmetisierung der Syntax Bearbeiten

Das Hauptproblem bei der Ausführung des oben beschriebenen Beweises scheint zunächst darin zu liegen, dass bei der Konstruktion einer Aussage  , die äquivalent zu „  ist unbeweisbar“,   eine Referenz auf   enthalten muss. Gödels Lösung ist, zu zeigen, dass Aussagen auf eine solche Weise Zahlen zugewiesen werden können, dass das Beweisen einer Aussage dadurch ersetzt werden kann, dass überprüft wird, ob die der Aussage zugewiesene Zahl eine gewisse arithmetische Eigenschaft hat. Dies ermöglicht die Konstruktion einer selbstbezüglichen Formel, die unendlichen Regress vermeidet.

Der erste Schritt des Beweises besteht somit darin, Formeln und endliche Folgen von Formeln (injektiv) auf natürliche Zahlen abzubilden. Diese Zahlen heißen Gödelnummern der Formeln. Zunächst wird jedem Symbol der Sprache der Arithmetik eine Zahl zugeordnet, ähnlich dem ASCII-Code, der jedem Buchstaben eine eindeutige Zahl zuordnet. Es gibt verschiedene Möglichkeiten dazu, hier wird direkt jedem Zeichen eine Ziffernfolge zugeordnet.

Nummer Symbol Bedeutung
11   null
12   Nachfolgerfunktion
13   Gleichheit
14   Addition
15   Multiplikation
16 ( linke Klammer
17 ) rechte Klammer
Nummer Symbol Bedeutung
18   eine Variable
19   Strich (für weitere Variablen x', x'', …)
21   Existenzquantor
22   Allquantor
23   logisches und
24   logisches oder
25   Negation

Man sieht hier, dass das im 2. Axiom benutzte Symbol für Implikation ( ) fehlt; bekanntlich ist   aber äquivalent zu   (zumindest in der klassischen Logik).

Die Gödelnummer einer Formel erhält man durch Aneinanderreihung der Gödelnummern für jedes Symbol der Formel. Jede Formel kann eindeutig aus ihrer Gödelnummer rekonstruiert werden. Die Gödelnummer einer Formel   wird mit   bezeichnet.

Mit dieser Gödelnummerierung erhält beispielsweise der Satz, der das Kommutativgesetz der Addition ausdrückt,   die Nummer:

22 18 22 19 16 18 14 19 13 19 14 18 17

(die Leerzeichen dienen nur der Lesbarkeit.) Nicht alle Zahlen repräsentieren Formeln, beispielsweise steht

13 22 14 18

für " ", was keine korrekte Formel ist.

Im System wird jede natürliche Zahl n durch ihr Numeral repräsentiert. Umgekehrt hat auch jedes Numeral eine Gödelnummer, so ist die Gödelnummer für   gleich:

12 12 12 12 11.

Die Zuweisung von Gödelnummern kann auf endliche Folgen von Formeln erweitert werden. Um die Gödelnummer einer endlichen Folge von Formeln zu erhalten, werden die Nummern der Formeln hintereinander geschrieben und jeweils durch eine Null getrennt. Da die Gödelnummer einer einzelnen Formel nie eine Null enthält, kann jede Formel der Folge eindeutig rekonstruiert werden.

Es ist wichtig, dass die formale Arithmetik einige einfache Tatsachen beweisen kann. Insbesondere muss sie beweisen können, dass jede Zahl eine Gödelnummer hat. Ebenso muss sie beweisen, dass es für die Gödelnummer einer Formel  , die eine freie Variable besitzt, und für eine Zahl   die Gödelnummer einer Formel  , in der alle Vorkommen von   durch die Gödelnummer von   ersetzt wurden, gibt, und dass man diese Gödelnummer aus der ersten durch eine effektive Prozedur erhalten kann.

Die Beweisbarkeitsrelation Bearbeiten

Das formale System besitzt Axiome und Schlussregeln, aus denen die Formeln des Systems bewiesen werden können. Ein formaler Beweis im System ist somit eine Kette von Formeln, in der jede entweder ein Axiom ist oder sich durch eine Schlussregel aus früheren Formeln gewinnen lässt.

Da das formale System entscheidbar ist, kann man effektiv entscheiden, ob eine gegebene Zahl Gödelnummer eines Axioms ist. Im Falle des endlich axiomatisierten Systems   genügt es sogar, zu überprüfen, ob die Zahl zur Gödelnummer einer der sieben Axiome gleich ist.

Schlussregeln können als binäre Relationen zwischen Gödelnummern von Folgen von Formeln repräsentiert werden. So gibt es beispielsweise eine Schlussregel  , durch die man aus den Formeln   die Formel   erhält. Dann besagt die Relation   zu dieser Ableitungsregel, dass   genau dann in Relation zu   steht (  gilt), wenn   die Gödelnummer einer Liste von Formeln ist, die   und   enthält, und   die Gödelnummer einer Liste von Formeln ist, die aus den Formeln in der von   kodierten Liste besteht und zusätzlich   enthält. Da jede Ableitungsregel eine einfache formale Vorschrift ist, ist es möglich, effektiv zu entscheiden, ob zwei Zahlen   und   in Relation   stehen.

Der zweite Schritt ist, zu zeigen, dass diese Gödelnummerierung benutzt werden kann, um den Begriff der Beweisbarkeit auszudrücken. Ein Beweis einer Formel   ist eine Kette von Formeln, in denen jede ein Axiom ist oder aus früheren Aussagen durch eine Ableitungsregel entsteht, und in der die letzte Aussage   ist. Damit lässt sich die Gödelnummer eines Beweises mit der oben angegebenen Methode zur Kodierung endlicher Folgen von Formeln definieren. Zudem lässt sich eine Relation   definieren, die für zwei Zahlen   and   genau dann wahr (und beweisbar) ist, wenn   die Gödelnummer eines Beweises von   ist, und   ist.

  ist eine arithmetische Relation, ebenso wie etwa „ “, nur viel komplizierter. Für alle spezifischen Zahlen   und   ist entweder die Formel   oder ihre Negation   beweisbar (aber nicht beide). Dies liegt daran, dass die Relation zwischen den Zahlen auf einfache Weise „überprüft“ werden kann. Die Konstruktion der Formel   hängt entscheidend davon ab, dass das Axiomensystem entscheidbar ist; ohne diese Annahme wäre die Formel nicht konstruierbar.

Damit lässt sich nun eine Relation   definieren, die die metasprachliche Aussage „  ist beweisbar“ repräsentiert:   ist beweisbar, wenn es eine Zahl   gibt, die einen Beweis für   kodiert:

 

Dabei ist " " ebenso wie " " nur eine Abkürzung für eine bestimmte, sehr lange, arithmetische Formel; die Symbole " " und " " selbst gehören nicht zur Sprache des Systems.

Ein wichtiges Merkmal der Formel   ist, dass   beweisbar ist, wenn   beweisbar ist. Denn wenn   beweisbar ist, dann existiert ein Beweis mit Gödelnummer  . Dann ist   wahr und, wie oben dargelegt, beweisbar. Damit ist erst recht die schwächere Existenzaussage   beweisbar.

Formalisiert lassen sich die Ergebnisse dieses Abschnitts mit Hilfe des Ableitbarkeitssymbols   zusammenfassen:

  1.  
  2.  
  3.  

Diagonalisierung Bearbeiten

Der nächste Schritt besteht darin, eine Aussage zu konstruieren, die ihre eigene Unbeweisbarkeit behauptet. Hierzu lässt sich das Diagonallemma anwenden. Dieses besagt, dass es in der Arithmetik und stärkeren formalen Systemen für jede Formel   mit freier Variable   eine Aussage   gibt, sodass das System die Äquivalenz

 

beweist. Man erhält also eine Formel mit der intuitiven Bedeutung „Ich habe die Eigenschaft  .“ Wenn man für   die Negation von   einsetzt, erhält man die Aussage   mit der Bedeutung „Meine Gödelnummer ist die Gödelnummer einer unbeweisbaren Formel“, also „Ich bin unbeweisbar“.

Die Formel   ist nicht direkt gleich zu  ; vielmehr besagt  , dass man, wenn man eine gewisse Berechnung ausführt, die Nummer einer unbeweisbaren Aussage erhält. Wenn man nun diese Berechnung durchführt, zeigt sich aber, dass die entstehende Zahl die Gödelnummer von   selbst ist. Diese Konstruktion ähnelt folgender natürlichsprachigen Aussage:

"ist in Anführungszeichen und gefolgt von sich selbst unbeweisbar." ist in Anführungszeichen und gefolgt von sich selbst unbeweisbar.

Dieser Satz bezieht sich nicht direkt auf sich selbst, aber man erhält die ursprüngliche Aussage, wenn man die angegebene Umformung durchführt, und damit behauptet der Satz seine eigene Unbeweisbarkeit. Der Beweis des Diagonallemmas benutzt eine ähnliche Methode.

Beweis der Unabhängigkeit des Gödelsatzes Bearbeiten

Man nehme nun an, dass das formale System ω-konsistent, und damit konsistent, ist. Sei   die Aussage, die im vorangehenden Abschnitt konstruiert wurde.

Wenn   beweisbar wäre, dann wäre   beweisbar. Aber   ist äquivalent zur Negation von  . Damit wäre das System inkonsistent, da es eine Aussage und ihre Negation beweisen würde. Also kann   nicht beweisbar sein, da die Theorie nach Voraussetzung konsistent ist.

Wenn die Negation von   beweisbar wäre, folgt aus der Konsistenz des Systems, dass   nicht beweisbar ist. Daher kann keine natürliche Zahl   die Gödelnummer eines Beweises von   sein. Gleichzeitig ist die Negation von   äquivalent zu  . Damit beweist das System einerseits die Existenz einer Zahl mit einer bestimmten Eigenschaft, aber beweist andererseits für jede Ziffer  , dass sie diese Eigenschaft nicht hat. Dies ist in einem  -konsistenten System unmöglich. Damit ist die Negation von   nicht beweisbar.

Damit ist die Aussage   unentscheidbar: Sie kann im gewählten System weder bewiesen noch widerlegt werden. Damit ist das System  -inkonsistent oder unvollständig. Diese Argumentation lässt sich auf jedes formale System, das die Voraussetzungen erfüllt, anwenden. Damit sind alle formalen Systeme, die die Voraussetzungen erfüllen,  -inkonsistent oder unvollständig.

Dabei ist zu bemerken, dass   auch dann nicht beweisbar ist, wenn das System konsistent und  -inkonsistent ist. Die Annahme der  -Konsistenz ist nur dazu nötig, zu zeigen, dass die Negation von   nicht beweisbar ist.

Wenn man versucht, die Unvollständigkeit zu beseitigen, indem man eine der unbeweisbaren Formeln   oder nicht   als Axiom hinzufügt, erhält man ein neues formales System. Auf dieses lässt sich der gleiche Prozess anwenden und man erhält wieder eine Aussage der Form „Ich bin im neuen System nicht beweisbar.“ und das neue System ist wieder  -inkonsistent oder unvollständig.

Verallgemeinerung von Rosser Bearbeiten

Wie im vorangehenden Abschnitt gezeigt, erlaubt die Konstruktion des Gödelsatzes zunächst nur den Beweis der Unvollständigkeit für  -konsistente Systeme. John Barkley Rosser zeigte 1936, dass sich mit der gleichen Technik die Unvollständigkeit auch für konsistente, aber  -inkonsistente Systeme zeigen lässt.

Durch das Diagonallemma lässt sich ein Satz konstruieren, der die metasprachliche Bedeutung „Wenn es einen Beweis für mich gibt, dann gibt es einen kürzeren Beweis für meine Negation.“ hat. Dieser Satz wird auch als Rossersatz   bezeichnet:

 

Angenommen das System ist konsistent und   ist beweisbar, wobei es einen Beweis mit Gödelnummer   gibt. Dann beweist das System   und somit das äquivalente  . Da   für alle Einsetzungen entscheidbar ist und das System nach Annahme konsistent ist, ist diese Aussage auch wahr in  . Damit gibt es eine Zahl  , die Gödelnummer eines Beweises der Negation von   ist. Damit beweist das formale System einen Satz und seine Negation, ist also inkonsistent, Widerspruch.

Nun nehme man an, das System sei konsistent und der Rossersatz sei widerlegbar, wobei es einen Beweis für die Negation mit Gödelnummer   gibt. Da das System konsistent ist, ist   nicht beweisbar. Dann ist beweisbar:

 
Da es keinen Beweis für   gibt, gibt es auch keinen Beweis mit Gödelnummer kleiner gleich  . Damit ist die Formel wahr. Da es nur endlich viele Zahlen kleiner   gibt, ist die Formel äquivalent zu einer quantorenfreien Formel   und damit auch beweisbar.
 
Für jede Zahl größer   findet man eine kleinere Zahl, die Nummer eines Beweises von   ist. Dies folgt direkt daraus, dass   eine solche Nummer ist.

Damit lässt sich aber durch Kontraposition und Modus ponens beweisen:

 

was dem Rossersatz   entspricht. Dies ist ein Widerspruch, da   nach Annahme nicht beweisbar sein kann. Also ist der Rossersatz in einem konsistenten System nicht widerlegbar.

Zweiter Unvollständigkeitssatz Bearbeiten

Der zweite Unvollständigkeitssatz besagt:

Jedes hinreichend mächtige konsistente System kann die eigene Konsistenz nicht beweisen.

Eine hinreichende Bedingung für „hinreichend mächtig“ ist, dass der Beweis des ersten Unvollständigkeitssatzes im System formalisiert werden kann. Dazu muss es eine Formel   besitzen, die die Beweisbarkeit in diesem System ausdrückt. Zudem muss diese Formel den sogenannten Bernays-Löb-Axiomen genügen. Diese fordern, dass für alle Formeln   und   folgende Bedingungen gelten:

  1. Wenn  , dann  
  2.  
  3.  

Dies ist zwar im System  , für das sich der erste Unvollständigkeitssatz bereits zeigen lässt, noch nicht erfüllt, aber bereits in der Primitiv Rekursiven Arithmetik (PRA), und erst recht in stärkeren Theorien wie der Peano-Arithmetik und der Mengenlehre.

Mithilfe dieser Eigenschaften lässt sich nun wie folgt der erste Unvollständigkeitssatz formalisieren.[1] Sei   die beim Beweis des ersten Satzes konstruierte Aussage mit der Bedeutung „Ich bin nicht beweisbar.“ Dann lassen sich folgende drei Aussagen ableiten:

  •   (nach Axiom 3)
  •   (nach der Definition von F)
  •   (aus der Tautologie   nach Axiom 1 und 2)

Durch Kontraposition erhält man aus diesen drei Sätzen folgenden Satz, der dem ersten Unvollständigkeitssatz entspricht:

  •  

Um einen Widerspruch zu erzeugen, nehme man nun an, dass T seine Konsistenz beweist, das heißt  . Damit gilt  , also  . Nach Axiom 1 gilt dann  . Dann wäre aber T inkonsistent, da es sowohl   als auch   beweist. Also kann T, wenn es konsistent ist, die eigene Konsistenz nicht beweisen.

Alternativ lässt sich der zweite Unvollständigkeitssatz auch durch den Satz von Löb beweisen. Nach diesem gilt für ein System  , das die Bernays-Löb-Axiome erfüllt, die Aussage   nur dann, wenn auch   gilt. Wenn nun   seine eigene Konsistenz beweist, gilt   und damit  . Nach dem Satz von Löb gilt also  , also ist   inkonsistent.

Alternative Beweise Bearbeiten

Es sind verschiedene andere Beweise des Unvollständigkeitssatzes bekannt, die im Gegensatz zu Gödels Beweis keine selbstbezügliche Formel benötigen. Direkte Beweise des ersten Unvollständigkeitssatzes für spezielle mächtige Systeme wie die Peano-Arithmetik oder die Zermelo-Fraenkel-Mengenlehre erhält man durch verschiedene Unbeweisbarkeitsresultate für mathematische Aussagen. Zudem gibt es auch verschiedene Beweise, die wie Gödels Beweis durch Formalisierung von Paradoxien die Unvollständigkeit aller ausreichend mächtigen formalen Systeme zeigen.

Halteproblem Bearbeiten

Alan Turing zeigte 1937,[2] dass sich der erste Unvollständigkeitssatz durch Mittel der Berechenbarkeitstheorie zeigen lässt.

Das Halteproblem ist die Menge der Gödelnummern von Paaren aus Turingmaschinen   und Wörtern  , sodass   auf Eingabe   nach endlich vielen Schritten anhält. Analog lässt sich das Halteproblem auch für andere Berechenbarkeitsmodelle definieren. Turing zeigte, dass das Halteproblem nicht entscheidbar ist. Es lässt sich zeigen, dass das Halteproblem arithmetisch repräsentierbar ist, es also eine arithmetische Formel   gibt, so dass   genau dann wahr ist, wenn   auf Eingabe   hält. Angenommen, die betrachtete Theorie ist vollständig und beweist nur arithmetisch wahre Formeln. Sei eine Turingmaschine   und ein Wort   gegeben. Dann kann man alle Beweise der Theorie systematisch durchsuchen, bis man einen Beweis für   oder   findet. Da die Theorie vollständig ist, ist genau eine der beiden Formeln tatsächlich beweisbar. Damit ließe sich aber das Halteproblem entscheiden, Widerspruch. Also gibt es Turingmaschinen   und Wörter  , sodass   weder beweisbar noch widerlegbar ist.

Berry-Paradoxon Bearbeiten

George Boolos zeigte 1989,[3] dass sich der erste Unvollständigkeitssatz durch eine Formalisierung des Berry-Paradoxons beweisen lässt. Dieses besteht aus folgendem natürlichsprachigen Ausdruck:

„Die kleinste natürliche Zahl, die nicht mit weniger als vierzehn Worten definierbar ist.“

Da jede nichtleere Menge natürlicher Zahlen ein kleinstes Element hat und weil nur endlich viele Zahlen mit weniger als vierzehn Wörtern definiert werden können, definiert dieser Ausdruck eine Zahl. Das Paradoxon besteht nun darin, dass die benannte Zahl angeblich nicht in weniger als vierzehn Wörtern benannt werden kann, der Ausdruck aber nur dreizehn Wörter hat.

Dieses Paradoxon wird von Boolos wie folgt formalisiert. Eine Formel   benennt die Zahl  , wenn das betrachtete System   beweist, dass   die einzige Zahl mit Eigenschaft   ist:

 

Nun gibt es ein arithmetisch definierbares Prädikat  , das genau dann wahr ist, wenn eine arithmetische Formel mit Länge   die Zahl   benennt. Damit lassen sich dann folgende Prädikate definieren:

 . „x kann mit weniger als y Symbolen benannt werden“
   ist die kleinste Zahl, die sich nicht mit weniger als   Symbolen definieren lässt“

Sei nun   die Länge der Formel  . Dann betrachte man die Formel    ist die kleinste Zahl, die sich nicht mit weniger als   Symbolen definieren lässt.“ Da nur endlich viele Zahlen mit weniger als   Symbolen definierbar sind, muss es eine Zahl   geben, sodass   wahr ist, und da es genau eine kleinste Zahl gibt, ist auch   wahr. Wäre diese Formel beweisbar, dann würde   die Zahl n benennen. Die Formel   hat aber viel weniger Zeichen als 10·k, damit kann die Formel   nicht beweisbar sein.

Gregory Chaitin zeigte 1974[4] durch eine ähnliche Formalisierung des Berry-Paradoxons, dass es für jedes formale System, das keine falschen arithmetischen Aussagen beweist, eine Zahl   gibt, sodass das System für keine Zahl beweisen kann, dass ihre Kolmogorow-Komplexität größer als   ist.

Grelling-Nelson-Antinomie Bearbeiten

Ein anderer Beweis lässt sich aus der Grelling-Nelson-Antinomie gewinnen.[5] Eine Formel   mit freier Variable heiße autologisch, wenn   beweisbar ist. Nun existiert eine arithmetische Formel   (für „Gödel-Grelling-Formel“) mit der Bedeutung: „  ist nicht die Gödelnummer einer autologischen Formel.“ Nun betrachte man die Formel   mit der Bedeutung „Die Formel   ist nicht autologisch.“ Angenommen, die Formel sei beweisbar. Dann ist aber nach Definition   autologisch und das System ist inkonsistent. Also ist die Formel   unbeweisbar, aber, da sie ebendiese Unbeweisbarkeit behauptet, auch wahr. Wäre die Formel widerlegbar, dann wäre das System ähnlich wie bei Gödels Beweis  -inkonsistent, würde also eine falsche Aussage beweisen.

Literatur Bearbeiten

  • Kurt Gödel: Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I. Monatshefte für Mathematik und Physik 38, 1931, S. 173–198, doi:10.1007/BF01700692. Zentralblatt MATH.
  • Kurt Gödel: Diskussion zur Grundlegung der Mathematik: Erkenntnis 2. Monatshefte für Math. und Physik, 1931–32, S. 147–148.
  • J. Barkley Rosser: Extensions of some theorems of Gödel and Church. In: Journal of Symbolic Logic. Band 1, 1936, S. 87–91.

Einzelnachweise Bearbeiten

  1. Die Beweisskizze folgt: Peter G. Hinman: Fundamentals of Mathematical Logic. A K Peters, 2005., Seite 421–423.
  2. Alan Turing: On computable numbers, with an application to the Entscheidungsproblem, Proceedings of the London Mathematical Society, 2, 42 (1937), S. 230–265. Online-Fassung@1@2Vorlage:Toter Link/www.turingarchive.org (Seite nicht mehr abrufbar, festgestellt im Oktober 2022. Suche in Webarchiven)
  3. George Boolos: A New Proof of the Gödel Incompleteness Theorem. In: Notices of the American Mathematical Society. Band 36, 1989, S. 388–390 und 676., Nachdruck in George Boolos: Logic, Logic, and Logic. Harvard University Press, 1998, ISBN 0-674-53766-1.
  4. Gregory Chaitin: Information-theoretic limitations of formal systems. In: Journal of the ACM (JACM). Band 21, Nr. 3. ACM, 1974, S. 403–424.
  5. George Boolos, John P. Burgess und Richard Jeffrey: Computability and Logic. 4. Auflage. Cambridge University Press, 2002, ISBN 0-521-70146-5., Seite 227

Weblinks Bearbeiten