Bariumwolframat

chemische Verbindung

Bariumwolframat ist eine anorganische chemische Verbindung des Bariums aus der Gruppe der Wolframate.

Strukturformel
Bariumion Orthowolframation
Allgemeines
Name Bariumwolframat
Andere Namen
  • Bariumweiß
  • Wolframweiß
  • Bariumwolframoxid
Summenformel BaWO4
Kurzbeschreibung

weißer Feststoff[1]

Externe Identifikatoren/Datenbanken
CAS-Nummer 7787-42-0
EG-Nummer 232-114-3
ECHA-InfoCard 100.029.195
PubChem 4280986
Wikidata Q20979871
Eigenschaften
Molare Masse 385,16 g·mol−1
Aggregatzustand

fest[1]

Dichte
  • 5,04 g·cm−3 (25 °C)[1]
  • 7,26 g·cm−3 (Hochdruckform)[2]
Schmelzpunkt

1502 °C[3]

Sicherheitshinweise
GHS-Gefahrstoffkennzeichnung[1]
Gefahrensymbol

Achtung

H- und P-Sätze H: 302​‐​332
P: keine P-Sätze[1]
Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet. Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen.

Gewinnung und Darstellung Bearbeiten

Bariumwolframat kann durch Reaktion von Salzlösungen von Wolfram und Barium wie Bariumnitrat mit Ammoniumparawolframat oder Natriumwolframat gewonnen werden.[4][5]

 

Es kann auch durch Reaktion von Bariumoxid mit Wolframtrioxid erhalten werden, wobei sich allerdings mit Ba3WO6 hauptsächlich ein weiteres Bariumwolframat bildet.[6]

 

Eigenschaften Bearbeiten

Bariumwolframat ist ein weißer Feststoff.[1] Er besitzt bei Normalbedingungen eine tetragonale Kristallstruktur vom Scheelittyp mit der Raumgruppe I41/a (Raumgruppen-Nr. 88)Vorlage:Raumgruppe/88. Bei Drücken über 7 GPa geht die Verbindung in eine monokline Fergusonit Struktur mit der Raumgruppe P21/n (Raumgruppen-Nr. 14, Stellung 2)Vorlage:Raumgruppe/14.2 über.[7]

Verwendung Bearbeiten

Bariumwolframat kann als Frequenzschiebermaterial für Laseranwendungen verwendet werden.[8]

Einzelnachweise Bearbeiten

  1. a b c d e f Datenblatt Barium wolframat, −100 mesh, 99.9% trace metals basis bei Sigma-Aldrich, abgerufen am 10. Juni 2016 (PDF).
  2. I. Kawada, K. Kato, T. Fujita: BaWO4-II (a high-pressure form). In: Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry. 30, S. 2069, doi:10.1107/S0567740874006431.
  3. W. W. Ge, H. J. Zhang, J. Y. Wang, J. H. Liu, X. G. Xu, X. B. Hu, M. H. Jiang, D. G. Ran, S. Q. Sun, H. R. Xia, R. I. Boughton: Thermal and mechanical properties of BaWO[4] crystal. In: Journal of Applied Physics. 98, 2005, S. 013542, doi:10.1063/1.1957125.
  4. S. Vidya, Sam Solomon, J. K. Thomas: Synthesis, Characterization, and Low Temperature Sintering of Nanostructured BaWO4 for Optical and LTCC Applications. In: Advances in Condensed Matter Physics. 2013, 2013, S. 1, doi:10.1155/2013/409620.
  5. M. Mohamed Jaffer Sadiq, A. Samson Nesaraj: Soft chemical synthesis and characterization of BaWO4 nanoparticles for photocatalytic removal of Rhodamine B present in water sample. In: Journal of Nanostructure in Chemistry. 5, 2015, S. 45, doi:10.1007/s40097-014-0133-y.
  6. W Tungsten Supplement Volume A 7 Metal, Chemical Reactions with Inorganic and Organic Compounds. Springer Science & Business Media, 2013, ISBN 978-3-662-08687-2, S. 244 (eingeschränkte Vorschau in der Google-Buchsuche).
  7. D. Errandonea, J. Pellicer-Porres, F. J. Manjón, A. Segura, Ch. Ferrer-Roca, R. S. Kumar, O. Tschauner, J. López-Solano, P. Rodríguez-Hernández, S. Radescu, A. Mujica, A. Muñoz, G. Aquilanti: Determination of the high-pressure crystal structure of BaWO4 and PbWO4. In: Physical Review B. 73, 2006, doi:10.1103/PhysRevB.73.224103.
  8. Colin E. Webb, Julian D. C. Jones: Handbook of Laser Technology and Applications: Laser design and laser systems. CRC Press, 2004, ISBN 978-0-7503-0963-9, S. 486 (eingeschränkte Vorschau in der Google-Buchsuche).