Transmutation

physikalische Umwandlung von Elementen

Transmutation (lateinisch transmutatio: Verwandlung) ist die Umwandlung eines chemischen Elements in ein anderes. Die historischen Alchemisten bezeichneten damit die angestrebte Verwandlung unedler Metalle in Gold oder Silber, etwa mit einem Stein der Weisen.

Elementumwandlung ist mit chemischen Mitteln nicht möglich. Sie erfolgt jedoch in verschiedenen Arten von radioaktiven Zerfällen und Kernreaktionen; auch dies wird manchmal ganz allgemein Transmutation genannt.[1][2][3] Elementumwandlung durch Kernreaktionen findet im großtechnischen Maßstab vor allem bei der Energiegewinnung in Kernreaktoren statt.

Transmutation in der Nuklear-EntsorgungBearbeiten

 
Radiotoxizität der verschiedenen Bestandteile des Atommülls heutiger Leichtwasserreaktoren

Seit den 1990er Jahren werden als Transmutation spezielle Techniken bezeichnet, mit denen radioaktiver Abfall in seiner Gefährlichkeit verringert werden soll, indem durch Kernreaktionen mit freien Neutronen die besonders langlebigen radioaktiven Bestandteile in kürzerlebige verwandelt werden. Hauptsächlich geht es dabei um die minoren Actinoide Neptunium, Americium und Curium – genauer: die Nuklide Np-237, Am-241, Am-243 und Cm-245 – mit ihren besonders langen Halbwertszeiten. In manchen der Konzepte soll auch Plutonium mit umgewandelt werden, obwohl Plutonium auch in Form von Uran-Plutonium-MOX-Brennstoff in heutigen (2015) Kernkraftwerken genutzt werden kann. Bestimmte Konzepte[4][5] sehen zusätzlich die Transmutation langlebiger Spaltprodukte vor.

PartitionierungBearbeiten

Vor der Transmutation müssen bei den meisten Verfahren zunächst die zu bearbeitenden Anteile – also die minoren Actinoide, je nach gewählter Strategie zusammen mit dem Plutonium und evtl. den Spaltprodukten – aus dem gebrauchten (abgebrannten) Reaktorbrennstoff abgetrennt werden. Für diese Partitionierung (Partitioning) müssen chemische Verfahren entwickelt werden, die über die existierenden Wiederaufarbeitungsverfahren, z. B. den PUREX-Prozess, hinausgehen. Erforscht werden neben hydrometallurgischen[6] auch pyrometallurgische Verfahren, nämlich elektrochemische Prozesse in einer Salzschmelze.[7]

Geeignete Transmutationsreaktion: KernspaltungBearbeiten

Die vorherrschenden Reaktionen der Actinoide mit Neutronen sind Kernspaltung und Neutroneneinfang. Die Spaltung ist der zur Halbwertszeitverkürzung erwünschte Prozess; er liefert zugleich auch noch nutzbare Energie. Der Neutroneneinfang erzeugt dagegen nur das nächstschwerere, manchmal ebenfalls langlebige Nuklid.

Der Spaltungs-Wirkungsquerschnitt von Nukliden mit gerader Neutronenzahl für einfallende thermische Neutronen ist klein und wächst erst für Neutronenenergien oberhalb ca. 1 MeV stark an. Der Einfangquerschnitt ist dagegen bei allen Nukliden für thermische Neutronen am größten. Deshalb werden zur Transmutation überwiegend Anlagen mit einem „schnellen“, also nicht moderierten Neutronenspektrum in Betracht gezogen.[8]

Transmutation mit kritischen ReaktorenBearbeiten

Minore ActinoideBearbeiten

Reaktoren mit schnellen Neutronen können zur Transmutation der minoren Aktinoide genutzt werden. Dazu gab es bereits Experimente, beispielsweise im Kernkraftwerk Phénix in Frankreich und in der Anlage EBR-II[9] in USA.[10]

Auch für das Konzept des Dual-Fluid-Reaktors wird die Einsatzmöglichkeit zur Transmutation erwähnt.[11]

Ein von Anfang an auf Transmutation und gleichzeitige Energiegewinnung ausgelegtes Projekt war ASTRID (Advanced Sodium Technological Reactor for Industrial Demonstration), ein in Frankreich geplantes 600-Megawatt-Kernkraftwerk mit natriumgekühltem Reaktor der IV. Generation.[12] Das Astrid-Projekt wurde 2019 vorläufig eingestellt, eine Weiterführung des Projekts in der zweiten Hälfte des jetzigen Jahrhunderts ist angedacht.[13] Auch andere existierende oder im Bau befindliche schnelle Reaktoren, z. B. die russischen Brutreaktortypen BN-800 und BN-1200, können so betrieben werden.

Die Transmutation von minoren Aktinoiden in schnellen Reaktoren kann allerdings zu Sicherheitsproblemen führen, wie hier am Beispiel des BN-800 erläutert wird. Im BN-800-Reaktor ist zur Zeit die Transmutation der in einem Jahr anfallenden minoren Aktinoide eines 1-GW-Kernkraftwerks möglich. An der Steigerung der Menge wird gearbeitet. Dazu ist es notwendig, das Uran-238 vollständig aus dem Reaktorkern zu entfernen und durch einen inerten Platzhalter zu ersetzen. In diesem Falle wäre es möglich, 90 kg minore Aktinoide im Jahr zu transmutieren, den Ausstoß von etwa fünf Leichtwasserreaktoren der 1-GW-Klasse.[14]

SpaltprodukteBearbeiten

Die Transmutation langlebiger Spaltprodukte (z. B. Selen-79, Zirconium-93, Technetium-99, Palladium-107, Iod-129 und Cäsium-135) ist wegen der sehr geringen Einfangquerschnitte im schnellen Neutronenspektrum anspruchsvoll. Je nach Nuklid kommen allerdings auch andere Reaktionen, vor allem (n,alpha)-Reaktionen, in Betracht. In den 1990er Jahren wurde an dem Versuchsreaktor ALMR in Hanford – mit schnellem Neutronenspektrum – die Transmutation von Technetium-99 in kurzlebige Spaltprodukte demonstriert. Es konnte deutlich mehr Technetium-99 transmutiert werden, als gleichzeitig erzeugt wurde.[15]

Auch thermische Neutronen wären zur Transmutation nicht effizient, da in diesem Falle Bestrahlungszeiten von weit mehr als 100 Jahren erforderlich würden. Es gibt Überlegungen, das Spektrum schneller Reaktoren durch geeignete Moderatoren für die Spaltprodukttransmutation zu optimieren.[16]

Insgesamt ist anzumerken, dass langlebige Spaltprodukte (hauptsächlich Technetium-99 und Cäsium-135) gegenüber Plutonium-239, Uran-235/238 oder minoren Aktinoiden eine um mehrere Größenordnungen geringere Radiotoxizität haben, wie obiger Abbildung zu entnehmen ist.[17]

Transmutation mit beschleunigergetriebenen ReaktorenBearbeiten

Im Brennstoff kritischer Reaktoren dürfen die minoren Actinoide nur eine geringe Beimischung bilden, denn wegen ihres zu kleinen Generationenfaktors wird sonst die Kritikalität nicht erreicht. Diese Beschränkung entfällt aber, wenn der Reaktor unterkritisch mit einer äußeren, von einem Teilchenbeschleuniger „getriebenen“ Neutronenquelle betrieben wird. Mit der Entwicklung der Spallations-Neutronenquellen sind Leistungsreaktoren dieser Art in den Bereich des Möglichen gerückt. Solche Accelerator Driven Systems (ADS) könnten alle überhaupt spaltbaren Nuklide energieliefernd verwerten.[4][18]

Zwei Konzepte sind besonders bekannt geworden: das Konzept von Bowman u. M.[4][5] und der Energy amplifier (Energieverstärker) nach Carlo Rubbia u. M. (manchmal auch als „Rubbiatron“ bezeichnet).[19][20] Bowmans Vorschlag ist der technologisch anspruchsvollere und „radikalere“ (mit Transmutation auch der Spaltprodukte). Er hat aber – zumindest bis 2013 – nicht zu detaillierten Entwicklungsarbeiten geführt.[21] Rubbias Vorschlag hält sich näher an schon erprobte Technologien.

Die europäische ADS-Demonstrationsanlage MYRRHA (Multi-purpose hYbrid Research Reactor for High-tech Applications) soll im Forschungszentrum Mol in Belgien errichtet werden und etwa 2030 in Betrieb gehen.[22][23][24] Eine ADS-Versuchsanlage am Beschleunigerzentrum J-PARC in Japan ist im Bau und soll den Betrieb mit Transmutationsbrennstoff etwa 2020 aufnehmen.[25]

Verwertung von WaffenplutoniumBearbeiten

Eine mit der Abfallverarbeitung verwandte Aufgabe ist die friedliche Nutzung (und damit Beseitigung) vorhandener Waffenplutonium-Vorräte. Sie kann zwar schon in heutigen (2015) Leichtwasserreaktoren mit MOX-Brennelementen erfolgen. Dabei entsteht allerdings aus dem Uran-Anteil des Brennstoffs wieder neues, wenngleich nicht waffengeeignetes Plutonium. Schneller wirksam und vielleicht wirtschaftlicher wäre die Verwendung modifizierter Reaktoren, wie z. B. von Galperin u. M.[26] unter der Bezeichnung Plutonium incinerator (Plutoniumverbrenner) vorgeschlagen. In einem üblichen Westinghouse-Druckwasserreaktor würde dazu statt des normalen Brennelement-Typs ein Typ mit zwei konzentrischen, verschieden beladenen Zonen (seed and blanket) verwendet. Die Innenzone jedes Brennelements enthält das Plutonium, aber kein Uran, und hat ein hohes Moderator-zu-Brennstoff-Verhältnis; die Außenzone enthält den Brutstoff Thorium, aus dem Uran-233 entsteht, das direkt im Reaktorbetrieb wieder verbraucht wird. Der Reaktor würde als Kraftwerk die elektrische Leistung von 1100 Megawatt liefern. Von der jährlichen Beladung mit 1210 kg Waffenplutonium würden 702 kg durch Spaltung beseitigt. Die restlichen 508 kg hätten beim Entladen einen hohen Anteil geradzahliger Transurane (Pu-240, Pu-242, Am-242, Cm-242, Cm-244) und eine hohe Spontanspaltungsaktivität, wären also für militärische Waffen ungeeignet.

LiteraturBearbeiten

  • Ortwin Renn (Hrsg.): Partitionierung und Transmutation – Forschung, Entwicklung, Gesellschaftliche Implikationen. München: Herbert Utz Verlag (2014), ISBN 978-3-8316-4380-6
  • Ken Nakajima (Hrsg.): Nuclear Back-end and Transmutation Technology for Waste Disposal. Springer, 2014, ISBN 978-4-431-55110-2
  • Mikhail K. Khankhasayev (Hrsg.): Nuclear Methods for Transmutation of Nuclear Waste: Problems, Perspectives, Cooperative Research. Proceedings of the International Workshop, Dubna, Russia, 29-31 May 1996. World Scientific, 1997
Speziell zur Partitionierung
  • K. L. Nash, G. J. Lumetta: Advanced separation techniques for nuclear fuel reprocessing and radioactive waste treatment. Cambridge (UK):Woodhead Publ. Ltd., 2011, ISBN 978-1-84569-501-9

EinzelnachweiseBearbeiten

  1. F. Soddy: Nobelpreis-Vortrag 1922, Seite 372
  2. J. Bleck-Neuhaus: Elementare Teilchen. 2. Auflage, Springer 2013, ISBN 978-3-642-32578-6, Seite 692
  3. J.-L. Basdevant, J. Rich, M. Spiro: Fundamentals in Nuclear Physics. Springer 2004, ISBN 0-387-01672-4, Seiten 43, 247
  4. a b c C. D. Bowman et al.: Nuclear energy generation and waste transmutation using an accelerator-driven intense thermal neutron source. Nuclear Instruments and Methods A Bd. 320 (1992) Seite 336–367
  5. a b C. D. Bowman: Accelerator driven systems for nuclear waste transmutation. Annual Review of Nuclear and Particle Science Bd. 48 (1998) Seite 505–556
  6. C. Madic et al.: PARTNEW, new solvent extraction processes for minor actinides. Bericht CEA-R-6066, Commissariat à l'Énergie Atomique, 2004
  7. Renn (s. Literaturliste) Seite 120–123
  8. Renn (s. Literaturliste) Seite 117
  9. Experimental Breeder Reactor II im Argonne National Laboratory Experimental Breeder Reactor II
  10. M. K. Meyer et al., "The EBR-II X501 minor actinide burning experiment", nachträgliche Auswertung, erschienen in Journal of Nuclear Materials 392, S. 176-183 (2009)
  11. Internetseite über den Dual Fluid Reaktor, [1]
  12. C. Latgé: The ASTRID project: status and prospects towards the conceptual phase, Mai 2014 Archivierte Kopie (Memento des Originals vom 5. März 2016 im Internet Archive)  Info: Der Archivlink wurde automatisch eingesetzt und noch nicht geprüft. Bitte prüfe Original- und Archivlink gemäß Anleitung und entferne dann diesen Hinweis.@1@2Vorlage:Webachiv/IABot/neutron.kth.se
  13. https://www.lemonde.fr/economie/article/2019/08/29/nucleaire-la-france-abandonne-la-quatrieme-generation-de-reacteurs_5504233_3234.html
  14. The Use of Sodium-Cooled Fast Reactors for Effectively Reprocessing Plutonium and Minor Actinides [2]
  15. S.F.Kessler, "Reduction of the sodium-void coefficient of reactivity by using a technetium layer", Westinghouse Hanford Company (1993) [3]
  16. Chiba, S., Wakabayashi, T., Tachi, Y. et al.: Method to Reduce Long-lived Fission Products by Nuclear Transmutations with Fast Spectrum Reactors. Scintific Reports 7, 13961 (2017). https://doi.org/10.1038/s41598-017-14319-7
  17. Long-lived Fission Products, www.radioactivity.eu, abgerufen am 18. Dezember 2019 [4]
  18. W. T. Hering: Angewandte Kernphysik: Einführung und Übersicht. Teubner 1999, ISBN 978-3-519-03244-1, Seite 303
  19. F. Carminati, C. Rubbia et al.: An energy amplifier for cleaner and inexhaustible nuclear energy production driven by a particle beam accelerator. Bericht CERN/AT/93-47 (ET) (1993)
  20. C. Rubbia et al., Conceptual Design of a fast neutron operated High Power Energy Amplifier. Bericht CERN/AT/95-44 (ET) (1995)
  21. Renn (s. Literaturliste) Seite 199
  22. A. Mueller, H. Abderrahim: Transmutation von radioaktivem Abfall. Physik Journal Heft 11/2010, Seite 33–38
  23. MYRRHA home page (Memento vom 19. Februar 2015 im Internet Archive)
  24. Über MYRRHA
  25. T. Sasa: Status of J-PARC transmutation experimental facility (2008) [5]
  26. A. Galperin, M. Segev and M. Todosov: A pressurized water reactor plutonium incinerator based on thorium fuel and seed-blanket assembly geometry. Nuclear Technology Band 132 (2000) Seite 214–225