Rohrreibungszahl

Kennzahl für den in einem Rohr durch Reibung in einer laminaren oder turbulenten Strömung verursachten Druckverlust
(Weitergeleitet von Rohrreibung)
Physikalische Kennzahl
Name Rohrreibungszahl
Formelzeichen
Dimension dimensionslos
Definition
Druckgradient im Rohr
Rohrdurchmesser
mittlere Geschwindigkeit
Dichte
Anwendungsbereich Rohrströmungen

Die Rohrreibungszahl (auch Rohrreibungsbeiwert) λ (Lambda) ist eine dimensionslose Kennzahl zur Berechnung des Druckabfalls einer Strömung aufgrund des Strömungswiderstands in einem geraden Rohr. Siehe auch: Strömung in Rohrleitungen

Das Rohrreibungsdiagramm (Moody-Diagramm) stellt die Rohrreibungszahl in Abhängigkeit von der Reynolds-Zahl und der Rauheit k dar. Sie ist so definiert, dass sie bei voll ausgebildeter Turbulenz (das Gebiet rechts oben) unabhängig von der Reynolds-Zahl ist.

Definition Bearbeiten

Der Druckverlust   ist bei gegebener (eventuell komplizierter) Geometrie und turbulenter Strömung näherungsweise proportional zur kinetischen Energiedichte. Das wird mit dem Druckverlustbeiwert ζ (Zeta) berücksichtigt:

 

Darin ist   die Dichte des Mediums und   die mittlere Strömungsgeschwindigkeit.

Für lange, gerade Rohre liegt es nahe, auch den Einfluss der Länge   und des Durchmessers   explizit zu berücksichtigen:

 

Für weniger lange Rohre gilt das nur näherungsweise, bzw. genügend weit hinter dem Eintritt differenziell:

 

Laminare Strömung Bearbeiten

Für die laminare, voll ausgebildete Strömung in einem kreisrunden Rohr bestimmt sich die Rohrreibungszahl nach dem Gesetz von Hagen-Poiseuille zu:

 

mit der Reynolds-Zahl (Re < 2300)

Turbulente Strömung Bearbeiten

Bei turbulenter Strömung gibt es zur Bestimmung der Rohrreibungszahl mehrere Näherungsformeln, die je nach Rauheit des Rohrs angewendet werden:

  • Hydraulisch glattes Rohr, d. h. die Unebenheiten der Rohrwand sind zur Gänze von einer viskosen Unterschicht umhüllt. Der Wert von   errechnet sich mit der Formel von Prandtl iterativ. Als Startwert kann   verwendet werden[1]:
 
Über die Lambertsche W-Funktion lässt sich auch eine explizite Formulierung angeben:
 
Eine häufig verwendete einfache Korrelation zur näherungsweisen Berechnung des Druckverlustverhaltens des glatten Rohres im Bereich   ist die nach Blasius[2]
 
  • Hydraulisch raues Rohr, d. h. die Unebenheiten der Wand des Rohres werden nicht mehr von einer viskosen Unterschicht umhüllt. Der Wert von   errechnet sich mit der Formel von Nikuradse:
 
mit der äquivalenten Sandrauigkeit   in mm
  • Übergangsbereich zwischen den vorstehend angeführten Zuständen. Hier gilt nach Colebrook und White:
 
Diese Formel kann näherungsweise auch für den hydraulisch glatten Bereich   und den hydraulisch rauen Bereich   genutzt werden.
Die Grenze zwischen Übergangs- und rauem Bereich verläuft nach Moody[3] bei
 .

Erläuterungen Bearbeiten

Rauheiten Bearbeiten

Die nachstehende Tabelle enthält Beispiele für absolute Rauheiten.[4][5][6]

Werkstoff und Rohrart Zustand der Rohre   in mm
absolut glattes Rohr theoretisch 0
neuer Gummidruckschlauch technisch glatt ca. 0,0016
Rohre aus Kupfer, Leichtmetall, Glas technisch glatt 0,001 … 0,0015
Kunststoff neu 0,0015 … 0,007
Rohr aus Gusseisen neu 0,25 … 0,5
angerostet 1,0 … 1,5
verkrustet 1,5 … 3,0
Stahlrohre gleichmäßige Rostnarben ca. 0,15
neu, mit Walzhaut 0,02 … 0,06
leichte Verkrustung 0,15 … 0,4
starke Verkrustung 2,0 … 4,0
Betonrohre neu, Glattstrich 0,3 … 0,8
neu, rau 2,0 … 3,0
nach mehrjährigem Betrieb mit Wasser 0,2 … 0,3
Asbest-Zementrohre neu 0,03 … 0,1
Steinzeugrohre neu, mit Muffen und Stößen 0,02 … 0,25
Tonrohre neu, gebrannt 0,6 … 0,8

Um verschiedene Rauheiten zu vergleichen, kann man die äquivalente Sandrauigkeit verwenden.

Die Verlustbeiwerte können berechnet oder aus Tabellen bzw. Diagrammen entnommen werden.

Verlustbeiwerte für teilgefüllte Rohre bzw. beliebige Gerinnequerschnitte Bearbeiten

In Entsprechung der Berechnung der Verlustbeiwerte für vollgefüllte Rohre können Verlustbeiwerte auch für teilgefüllte Rohre bzw. beliebige Gerinnequerschnitte ermittelt werden. Dabei wird in der Berechnung statt des Rohrinnendurchmessers   der hydraulische Durchmesser   verwendet:

 

mit

  • der Querschnittsfläche  
  • dem benetzten Umfang  .

Die Anwendung der Rohrreibungszahl hat sich für die Berechnung des Abflusses in offenen Gerinnen bisher nicht durchgesetzt und wird nur zur Berechnung des Abflusses in Rohren angewendet. Zur Berechnung des Abflusses in offenen Gerinnen wird zumeist auf die empirisch gewonnene Fließformel nach Strickler[7] (im englischen Sprachraum nach Manning),[8] zurückgegriffen.

Siehe auch Bearbeiten

Quellen Bearbeiten

  1. Wolfgang Kalide: Einführung in die technische Strömungslehre. 7., durchgesehene Auflage. Hanser, München/Wien 1990, ISBN 3-446-15892-8, S. 58.
  2. Rolf Herz: Grundlagen der Rohrleitungs- und Apparatetechnik. Vulkan-Verlag, 2004, S. 180 (eingeschränkte Vorschau in der Google-Buchsuche).
  3. Lewis F. Moody, Professor für Hydraulic Engineering, Princeton University: “Friction Factors for Pipe Flow” Trans. ASME, vol. 66, 1944.
  4. Wolfgang Kalide: Einführung in die technische Strömungslehre. 7., durchgesehene Auflage. Hanser, München/Wien 1990, ISBN 3-446-15892-8, S. 237.
  5. Walter Wagner: Strömung und Druckverlust: mit Beispielsammlung. 5., überarb. Auflage. Vogel, Würzburg 2001, ISBN 3-8023-1879-X, S. 79.
  6. Buderus Heiztechnik (Hrsg.): Handbuch für Heizungstechnik. Arbeitshilfe für die tägliche Praxis. 34. Auflage. Beuth, Berlin/Wien/Zürich 2002, ISBN 3-410-15283-0, S. 696.
  7. Sektionschef des Eidgenössischen Amtes für Wasserwirtschaft, Albert Strickler (1887 - 1963) Beiträge zur Frage der Geschwindigkeitsformel und der Rauhigkeitszahl für Ströme, Kanäle und geschlossene Leitungen. Mitteilungen des Eidg. Amtes für Wasserwirtschaft, Bern, 1923.
  8. antiquiert auch Philipe Gaspard Gauckler (1826–1905) bezeichnet