Algorithmus von Christofides

Algorithmus der Graphentheorie
(Weitergeleitet von Christofides-Heuristik)

Der Algorithmus von Christofides ist ein Algorithmus, der zur Approximation des metrischen Problem des Handlungsreisenden dient. Er wurde 1976 von Nicos Christofides veröffentlicht[1] und war lange Zeit die beste Approximation des Problems für euklidische Graphen. 1996 stellten Arora und Mitchell für diese jedoch ein besseres PTAS vor.

Formal geht man ähnlich wie bei der Minimum-Spanning-Tree-Heuristik vor:

  1. Erzeuge einen minimalen aufspannenden Baum  für den zugrunde liegenden Graphen mit Kantengewichten.
  2. Suche ein (bezüglich Kantengewicht) minimales perfektes Matching im Graphen zwischen den Knoten, die ungeraden Grad in dem gerade erzeugten Baum besitzen.
  3. Füge diese Kanten zu hinzu. Der entstehende Graph  ist dann eulersch.
  4. Konstruiere eine Eulertour in .
  5. Konstruiere einen Hamiltonkreis in . Wähle dazu einen beliebigen Startknoten und gehe die Eulertour ab. Ersetze dabei die bereits besuchten Knoten durch direkte Verbindungen (bzw. Abkürzungen) zum nächsten noch nicht besuchten Knoten.

GütegarantieBearbeiten

Es lässt sich zeigen, dass die Christofides-Heuristik eine 1,5-Approximation ist. Das heißt, die so entstandene Rundreise ist maximal um die Hälfte länger als die optimale Tour. Der Beweis beruht dabei auf einer wiederholten Anwendung der Dreiecksungleichung.

  • Die Summe der Kantengewichte im Minimum-Spanning-Tree (MST) ist sowieso kleiner gleich der optimalen Lösung, da jede Lösung des Traveling Salesman Problem (TSP) einen Spannbaum enthält.
  • Bezüglich des Matchings gilt folgendes:
    Sei   die Folge der Knoten vormals ungeraden Grades in der optimalen Lösung; dazwischen liegen irgendwelche anderen Knoten:  . Betrachte die beiden Matchings   sowie  . Dann gilt aufgrund der Dreiecksungleichung, dass  
    Also sind die Gesamtkosten der optimalen Lösung größer gleich derer zweier beliebiger Matchings, insbesondere also zwei Mal des minimalen Matchings. Dann ist ein minimales Matching auch nur maximal halb so groß wie die optimale Lösung. So lässt sich die Summe der Kantengewichte entlang der Eulertour in   (d. h. die Summe der Gewichte aller Kanten in  ) nach oben hin abschätzen.
  • Schließlich lässt sich die Summe der Kanten in dem aus der Eulertour erzeugten Hamiltonkreis durch erneutes Anwenden der Dreiecksungleichung nach oben hin durch die Summe der Kanten in der Eulertour abschätzen (denn die Direktkanten können nicht länger sein als die Verbindung über einen schon früher besuchten Knoten), also transitiv durch das 1,5-Fache der optimalen Lösung.

BeispielBearbeiten

  Ausgangslage: metrischer Graph   mit Kantengewichten
  Minimalen Spannbaum   berechnen.
  Die Menge der Knoten mit ungeradem Grad im Spannbaum bestimmen ( ).
    auf die Knoten aus   reduzieren ( ).
  Matching   mit minimalem Gewicht auf   bestimmen.
  Matching und Spannbaum vereinigen ( ). Dieser Schritt sorgt dafür, dass Knoten mit vormals ungeradem Grad nun einen geraden Grad aufweisen. Dies ist eine notwendige Bedingung für die Berechnung der Euler-Tour im nächsten Schritt.
  Euler-Tour auf   berechnen (A-B-C-A-D-E-A).
  Wiederholt vorkommende Knoten entfernen und durch Direktverbindung ersetzen (A-B-C-D-E-A). In metrischen Graphen führt dies nicht zu einer längeren Strecke.

Diese Tour ist die Ausgabe des Algorithmus.

LiteraturBearbeiten

  • Lawler, Lenstra, Rinnooy Kan, Shmoys (Hrsg.): The Traveling Salesman Problem. A Guided Tour of Combinatorial Optimization. Wiley, Chichester 1985. ISBN 0-471-90413-9, Abschnitt 5.3.4: Christofides' algorithm

WeblinksBearbeiten

EinzelnachweiseBearbeiten

  1. N. Christofides, Worst-case analysis of a new heuristic for the travelling salesman problem, Report 388, Graduate School of Industrial Administration, Carnegie Mellon University (CMU), 1976