Ein Gassensor ist ein Sensor zur Detektion gasförmiger Substanzen und ist damit ein Chemosensor. Die chemische Information in der Umgebungsluft wird vom Gassensor in ein elektrisch nutzbares Signal umgewandelt.

Einsatzgebiete und wirtschaftliche Bedeutung Bearbeiten

Einsatzgebiete und Beispielanwendungen Bearbeiten

(TEXT)

Wirtschaftliche Bedeutung Bearbeiten

(TEXT)

Anforderungen an Gassensoren Bearbeiten

(TEXT)

Messprinzipien und Funktionsweisen Bearbeiten

 
Prinzip eines Chemosensors als Gassensor

Problematik chemischer Sensoren Bearbeiten

(TEXT)

Übersicht Messprinzipien Bearbeiten

(TEXT)

Physikalische Messmethoden Bearbeiten

(TEXT)

Chemische Messmethoden Bearbeiten

(TEXT)

Elektrische Prinzipien Bearbeiten

Resistiv, Chemo-Resistor Bearbeiten

(TEXT)

Kapazitiv Bearbeiten

(TEXT)

Potentiometrisch Bearbeiten

(TEXT)

Amperometrisch Bearbeiten

(TEXT)

Thermisch Bearbeiten

(TEXT)

Thermochemisch Bearbeiten

(TEXT)

Thermisch-physikalisch Bearbeiten

(TEXT)

Gravimetrisch Bearbeiten

(TEXT)

Optisch Bearbeiten

(TEXT)

Biochemisch Bearbeiten

(TEXT)

Funktionsweisen gängiger Sensorprinzipien Bearbeiten

Wärmetönungseffekt Bearbeiten

Funktionsprinzip Bearbeiten

(TEXT)

Bauformen Bearbeiten

(TEXT)

Vorteile Bearbeiten

(TEXT)

Nachteile Bearbeiten

(TEXT)

Metalloxid-Halbleitergassensoren (MOX) Bearbeiten

Funktionsprinzip Bearbeiten

(TEXT)

Bauformen Bearbeiten

(TEXT)

Der Taguchi-Sensor

(TEXT)

Vorteile Bearbeiten

(TEXT)

Nachteile Bearbeiten

(TEXT)

Infrarotoptische Gassensoren (NDIR) Bearbeiten

 
Verschiedene pyroelektrische NDIR-Sensoren
Funktionsprinzip Bearbeiten

NDIR-Gassensoren nutzen zur Messung der Gaskonzentration die unterschiedliche Absorption infraroter Strahlung durch Gase in ähnlicher Weise wie die Absorptionsspektrometrie. Die Abkürzung NDIR steht für NichtDispersiv InfraRot. Im Gegensatz zur Spektrometrie wird der interessierende Spektralbereich nicht punktweise (dispersiv) durchfahren. Vielmehr wird in einem einzigen Schritt ein Summensignal gebildet.

Absorption von Infrarotstrahlung durch Gase Bearbeiten

Die Strahlungsabsorption bei Gasen erfolgt im infraroten Wellenlängenbereich hauptsächlich durch die Anregung von Schwingungen und Rotation der Gasmoleküle. Die Erklärung liefert die Quantenphysik. Die notwendigen Energien ergeben sich aus den Abständen der Energieniveaus der quantenmechanischen Grundzustände ( ) zu den angeregten Zuständen ( ). Möglich sind aber auch Übergänge zwischen höheren Niveaus. Im ersten Fall können dann Photonen der Energie

 

absorbiert werden. Darin sind h und c Naturkonstanten (Plancksches Wirkungsquantum und Lichtgeschwindigkeit) und λ die Wellenlänge der Strahlung. Es müssen aber weitere Bedingungen erfüllt sein. So sind Übergänge nur zwischen energetisch benachbarten Zuständen erlaubt. Damit eine Wechselwirkung von elektromagnetischer Strahlung mit dem Gas überhaupt stattfinden kann, muss sich das Dipolmoment des anzuregenden Moleküls bei der Absorption ändern.

Letzteres ist nicht bei allen Gasen möglich. So können bei Edelgasen keine Schwingungen oder Rotationen angeregt werden, da deren Moleküle nur aus einem einzigen Atom bestehen. Auch elementare zweiatomige Moleküle wie Sauerstoff oder Stickstoff absorbieren im infraroten Spektralbereich nicht, da sie kein permanentes Dipolmoment besitzen und bei ihnen auch nur Schwingungen möglich sind, die kein Dipolmoment erzeugen. Allerdings ist die Existenz einen permanenten Dipolmoments keine Voraussetzung für eine Strahlungsabsorption. So hat das Kohlendioxidmolekül zwar kein permanentes Dipolmoment, absorbiert aber sehr gut Infrarotstrahlung. Die symmetrischen Streckschwingungen bewirken hier keine Änderung des Dipolmoments und damit auch keine Absorption. Diese wird durch die Anregung von Knick- und asymmetrischen Streckschwingungen bewirkt.

NDIR-Messprinzip Bearbeiten
 
Transmission von 550 ppm Kohlendioxid auf 13 cm und eines passenden Bandpassfilters

Beim NDIR-Prinzip wird die optische Transmission des Gases in einem ausgewählten Spektralbereich gemessen. Dieser wird mittels eines Bandpassfilters so festgelegt, dass er möglichst genau eine ausreichend intensive und charakteristische Absorptionsbande des Gases umschließt. Die Abbildung zeigt das am Beispiel des Kohlendioxids.

Daraus kann mittels des Lambert-Beer'schen Gesetzes die Konzentration des Gases berechnet werden:

 

Darin sind   die Transmission des Gases, α der Absorptionskoeffizient, c die Konzentration des Gases und d die Länge des Absorptionspfades. In Gasmessgeräten ist die Pfadlänge meist die innere Länge der Gasküvette, das heißt der Abstand zwischen den optischen Küvettenfenstern. Zu beachten sind die Bedingungen und Grenzen für die Gültigkeit des Gesetzes. Zum Beispiel gibt es Abweichungen bei hohen Konzentrationen, da hier die Wechselwirkung der Gasmoleküle nicht mehr vernachlässigt werden kann, wie das beim Lambert-Beer'schen Gesetz vorausgesetzt wird. Praktisch wird meist ein prinzipieller Aufbau wie in der Abbildung Transmissionsmessanordnung genutzt.

 
Transmissionsmessanordnung beim NDIR-Prinzip

Darin sind Q eine Infrarotstrahlungsquelle, K1 und K2 die Fenster der Gasküvette mit dem Gas G, F der optische Bandpassfilter und D ein breitbandiger Infrarotdetektor. Als Detektoren werden meist sogenannte thermische Detektoren verwendet. Diese wandeln zunächst die Strahlung über eine breitbandig absorbierende Schicht in eine Temperaturerhöhung eines temperatursensitiven Elements wie einen pyroelektrischen Chip oder ein Thermopile um. Letzteres erzeugt dann über eine weitere Umwandlung und gegebenenfalls eine Verstärkung das Sensorsignal. Für professionelle Gasmessstrecken werden auf Grund der höheren Detektivität meist pyroelektrische Detektoren eingesetzt.

Die Signalspannung ergibt sich dann als spektrale Summe über alle Produkte aus der spezifischen Ausstrahlung der Quelle (S(λ)), der Empfindlichkeit des Detektors (E(λ)), der Detektorfläche (A) und den Transmissionen aller Elemente dazwischen  :

 

Für die Berechnung des Signals genügt es, wenn Anfang und Ende des Integrationsbereichs (  und  ) so festgelegt werden, dass alle Bereiche erfasst werden, die Beiträge zum Signal liefern könnten.

Zur Elimination der Konstanten verwendet man meist den Quotienten aus dem Signal mit Gas und ohne Gas. Letzteres kann in einem Mehrkanaldetektor durch einen Referenzkanal realisiert werden, bei dem ein Bandpassfilter verwendet wird, in dessen Durchlassbereich keine Absorptionsbanden der im zu messenden Gemisch vorkommenden Gase liegen. In der praktischen Anwendung wird das Gasmessmodul häufig mit Hilfe von Prüfgasgemischen kalibriert.

Bauformen Bearbeiten

Die Bauformen von NDIR-Gasmessmodulen werden wesentlich von der Konstruktion der Gasküvette bestimmt. Die einfachste Variante der Küvette ist ein Rohr, an dessen Enden sich Strahlungsquelle und Detektor mit Bandpassfilter befinden. Die Länge der Küvette sind einige Millimeter bis einige zehn Zentimeter.

Kleinere Bauformen erreicht man durch einen gefalteten Strahlengang mittels Reflektoren. Bei allen steckbaren Modulen sind in der Regel Strahler und Detektor auf einer Seite angeordnet und gegenüber ein Reflektor. Die Abmessungen sind wenige Zentimeter.

Werden große Pfadlängen benötigt, zum Beispiel bei schwach absorbierenden Gasen, sind die vorgenannten Konstruktionen nicht mehr anwendbar. Es werden dann Zellen mit Vielfachreflexionen eingesetzt, zum Beispiel Pfund-, White-, Herriott- oder ähnliche Zellen.

Vorteile Bearbeiten

NDIR-Gasmessgeräte sind einfach, robust und kostengünstig. Sie kommen bei einer getakteten Strahlungsquelle völlig ohne mechanisch bewegte Teile aus. Das Prinzip erlaubt bei Nutzung eines zusätzlichen Referenzkanals eine einfache Funktionskontrolle. Wenn in einem Gasgemisch die Konzentration weniger, bekannter Gase von einigen 10 ppm bis 100 % mit mittlerer Auflösung gemessen werden soll, ist das Verfahren besonders geeignet. Es bietet sich deshalb insbesondere für tragbare oder ortsfeste Betriebsmessgeräte und Gaswarneinrichtungen an.

Nachteile Bearbeiten

Das Verfahren ist nur bei infrarotaktiven Gasen verwendbar. Edelgase und elementare zweiatomige Gase (wie Sauerstoff oder Stickstoff) können nicht gemessen werden. Ferner müssen die zu messenden Gase bekannt sein, um die passenden Bandpassfilter auswählen zu können. Ein Gasmessmodul ist deshalb auch immer auf die Gase festgelegt, wofür es entwickelt wurde. Schwach absorbierende Gase erfordern große Pfadlängen und damit entweder lange Küvetten oder komplizierte Mehrfachreflexionszellen. Geringe Konzentrationen schwach absorbierender Gase und hohe Konzentrationen stark absorbierender Gase können nicht mit der gleichen Küvette gemessen werden. Sehr geringe Konzentrationen im unteren ppm- oder ppb-Bereich sind nicht messbar. Auf Grund des exponentiellen Zusammenhangs im Lambert-Beer'schen Gesetz unterliegt auch die Messauflösung einem solchen, das heißt die Messauflösung wird mit steigender Konzentration schlechter. Müssen sehr viele Gase gemessen werden, wird das Verfahren ungeeignet, da für jedes Gas ein Kanal verwendet werden müsste. Auch Gase mit eng benachbarten oder sich überlappenden Absorptionsbanden sind nur mit hohem Aufwand unterscheidbar. Durch Messung im Bereich einer zweiten Absorptionsbande lassen sich solche Gase allerdings oft trennen. Das erfordert jedoch einen weiteren Messkanal.

Betriebsarten und Selektivitätssteigerung Bearbeiten

(TEXT)

Sensorschichtoptimierung Bearbeiten

(TEXT)

Filter Bearbeiten

(TEXT).

Betriebsarten Bearbeiten

Einzelsensor, Konstantbetrieb Bearbeiten

(TEXT)

Sensorarray Bearbeiten

(TEXT)

Virtueller Multisensor Bearbeiten

(TEXT)

Neuere Entwicklungen Bearbeiten

(TEXT)

Einzelnachweise Bearbeiten


Literatur Bearbeiten

(TEXT)

Weblinks Bearbeiten

Commons: Gassensoren – Sammlung von Bildern, Videos und Audiodateien