Das Lemma von Thue, bei manchen Autoren auch Satz von Thue genannt, ist ein Lehrsatz der Elementaren Zahlentheorie, eines Teilgebiets der Mathematik. Es geht auf den norwegischen Mathematiker Axel Thue zurück und spielt eine Rolle bei Untersuchungen zu diophantischen Gleichungen. Der Beweis beruht auf dem dirichletschen Schubfachprinzip.[1][2][3][4]

Formulierung des Lemmas Bearbeiten

Thues Lemma lässt sich zusammengefasst formulieren wie folgt:[5][2][6][4][4][7]

Sind eine ganze Zahl   und eine zu dieser teilerfremde positive natürliche Zahl   gegeben, so gibt es stets ein Paar   von positiven natürlichen Zahlen, welches einerseits den Ungleichungen
(U)    
genügt sowie andererseits mindestens eine der beiden Kongruenzrelationen
(K1)    
bzw.
(K2)    
erfüllt.
Insbesondere gilt:
Zu einer ganzen Zahl   und einer Primzahl   , welche   nicht teilt, findet man stets ein Paar   von ganzen Zahlen, welches den Ungleichungen
(U*)    
genügt und zugleich die Kongruenzrelation
(K*)    
erfüllt.
Darüber hinaus gilt sogar allgemeiner:[8]
Seien   ganze Zahlen und dabei   und   teilerfremd und zugleich die Ungleichungen   erfüllt.
Dann gibt es ein Paar   von ganzen Zahlen, welches den Ungleichungen   und   genügt und zugleich eine der beiden obigen Kongruenzrelationen Ki erfüllt.

Folgesatz Bearbeiten

Mit dem thueschen Lemma (und unter Zuhilfenahme des Ersten Ergänzungssatzes zum quadratischen Reziprozitätsgesetz) lässt sich ein bekannter Satz über die Darstellbarkeit gewisser Primzahlen als Quadratsummen beweisen, welcher zuerst von Leonhard Euler bewiesen wurde (jedoch auch schon Albert Girard und Pierre de Fermat bekannt gewesen sein soll):[9][3]

Eine Primzahl  , welche der Kongruenzrelation   genügt, hat stets eine Summendarstellung   und diese Darstellung ist, von der Reihenfolge der beiden Summanden abgesehen, sogar eindeutig.

Historische Anmerkung Bearbeiten

Axel Thues Lemma geht auf eine seiner Arbeiten aus Jahre 1915 zurück.[10] Schon im Jahre 1913 hatte ein(e) Mathematiker(in) namens L. Aubry ein verwandtes Resultat vorgelegt. Zu beiden wurde in der Folge von diversen Autoren eine Anzahl von Verallgemeinerungen geliefert.[11]

Literatur Bearbeiten

Einzelnachweise und Notizen Bearbeiten

  1. Peter Bundschuh: Einführung in die Zahlentheorie. 2008, S. 154 ff
  2. a b Wacław Sierpiński: Elementary Theory of Numbers 1988, S. 30–31
  3. a b Hartmut Menzer: Zahlentheorie. 2010, S. 273 ff.
  4. a b c Kenneth H. Rosen (Hrsg.): Handbook of Discrete and Combinatorial Mathematics. 2000, S. 234
  5. Bundschuh, op. cit., S. 155
  6. Menzer, op. cit., S. 274
  7. A. Scholz, B. Schoeneberg: Einführung in die Zahlentheorie. 1966, S. 44 ff
  8. Diese etwas allgemeinere Fassung des Lemmas geht auf die Einführung in die Zahlentheorie von Scholz und Schoeneberg (s. S. 44) zurück.
  9. Bundschuh, op. cit., S. 154–156
  10. Vgl. hierzu die Besprechung der Arbeit von Brauer und Reynolds in den Mathematical Reviews (MR0048487). Hinsichtlich des ersten Auftretens des Lemmas weist der zugehörige Artikel Thue’s lemma in der englischsprachigen Wikipedia auf eine von Thue im Jahre 1902 vorgelegte Arbeit hin. Siehe: Trygve Nagell et al. (Hrsg.): Selected Mathematical Papers of Axel Thue. 1977, S. 57–75, S. 539–549!
  11. Alfred Brauer, R. L. Reynolds: On a theorem of Aubry-Thue. In: Canadian J. Math., 3, S. 367 ff.