Hauptmenü öffnen

Die Sellmeier-Gleichung ist in der Optik eine empirisch ermittelte, funktionelle Beschreibung der Abhängigkeit des Brechungsindex eines lichtdurchlässigen Mediums von der Wellenlänge des Lichts. Die Gleichung wurde nach Wolfgang von Sellmeier benannt, der sie 1871 in Anlehnung an die Cauchy-Gleichung und Kramers-Kronig-Relation veröffentlichte.[1][2] Anwendung findet sie vor allem in der technischen Optik zur Beschreibung der Dispersion von optischem Glas und anderen optischen Werkstoffen.

Mathematische BeschreibungBearbeiten

Beispiel: Koeffizienten für das Borosilikatglas BK7
Koeffizient Wert
B1 1,03961212
B2 0,231792344
B3 1,01046945
C1 6,00069867·10−3 μm2
C2 2,00179144·10−2 μm2
C3 103,560653 μm2
 
Darstellung des Brechungsindex von Borsilikatglas (BK7) gegen die Wellenlänge. Im Diagramm werden die gemessenen Werte und entsprechende parametrische Anpassungen der Cauchy- bzw. Sellmeier-Gleichung miteinander verglichen.

Die Sellmeier-Gleichung kann als Erweiterung der Cauchy-Gleichung aufgefasst werden, sie lautet:

 

mit B1,2,3 und C1,2,3 als experimentell ermittelte Sellmeier-Koeffizienten. Die B1,2,3 sind dimensionslos, und die C1,2,3 werden gewöhnlich in μm² angegeben.

Die Genauigkeit im sichtbaren Bereich ist in der Regel besser als  .

Der rechte Term der Gleichung kann für eine größere Genauigkeit auch um weitere Summanden der Form

 

erweitert werden.

Setzt man  , so lassen sich die   als Resonanzwellenlängen von Absorptionslinien oder -banden erklären.

Siehe auchBearbeiten

EinzelnachweiseBearbeiten

  1. Dirk Poelman, Philippe Frederic Smet: Methods for the determination of the optical constants of thin films from single transmission measurements: a critical review. In: Journal of Physics D: Applied Physics. Band 36, Nr. 15, 2003, S. 1850–1857, doi:10.1088/0022-3727/36/15/316.
  2. Wolfgang von Sellmeier: Zur Erklärung der abnormen Farbenfolge in Spectrum einiger Substanzen. In: Annalen der Physik und Chemie. Band 143, 1871, S. 272–282, doi:10.1002/andp.18712190612 (Digitalisat auf Gallica).