Hauptmenü öffnen

Der Massenerhaltungssatz (manchmal auch Lomonossow-Lavoisier-Gesetz genannt) ist ein Erhaltungssatz in der Chemie. Er besagt, dass sich bei chemischen Reaktionen die Gesamt-Masse der beteiligten Stoffe nicht nennenswert ändert.

Bei physikalischen Prozessen gilt dieser Satz nicht allgemein.

Inhaltsverzeichnis

GeschichteBearbeiten

Meist wird die erste explizite Formulierung Antoine Lavoisier zugeschrieben, der die Massenerhaltung auch in zahlreichen Experimenten mit Waagen überprüfte. Er formulierte das Prinzip explizit in seinem berühmten Traitè Élementaire de Chimie von 1789,[1] verwendete es aber schon viel früher. Erhaltung der Masse war aber schon lange vor Lavoisier ein häufig angenommenes, bis auf die Antike zurückgehendes Naturprinzip, das wie selbstverständlich von Joseph Black, Henry Cavendish oder Michail Lomonossow verwendet wurde. Noch früher war es von Jean Rey 1630 formuliert worden.[2] Partington[3] schreibt in seiner Geschichte der Chemie, dass es bis auf die Antike zurückgeht und zitiert Formulierungen von Edme Mariotte (1678) und Jean Pierre Chardenon (1764).

Auch Lomonossow war ein früher Proponent der Massenerhaltung. Sowjetische Wissenschaftler vertraten die These, dass er das Massenerhaltungsgesetz vor Lavoisier formuliert habe (zum Beispiel in den Neuen Kommentaren der Petersburger Akademie, Erscheinungsjahr 1750), dass Lavoisier es von Lomonossow übernommen habe und dass Lomonossow es auch experimentell untermauert habe (um 1756). Alle diese Behauptungen wurden von Philip Pomper zurückgewiesen.[4][5] Lomonossow kritisierte Robert Boyles Experiment der Kalzinierung von Metallen (der Ausdruck calcination bezeichnete damals einfach trockenes Erhitzen an Luft). Boyle meinte inkorrekterweise, eine Gewichtszunahme des Metalls bei Kalzination in geschlossenen Gefäßen beobachtet zu haben und führte das auf vom Metall aufgenommene Feuerteilchen zurück, was Lomonossow zurückwies. Stattdessen griff Lomonossow bei der Kalzination von Metallen in abgeschlossenen Gefäßen zu einer merkwürdigen Erklärung: er glaubte, dass gleiche Massen verschiedenes Gewicht haben könnten, wenn sich ihre Oberflächen unterschieden (mehr Angriffsfläche für das Gravitationsfluid). Bei der Verbrennung in geschlossenen Gefäßen war das nach Lomonossow der Fall, da die Verbindung der Teilchen durch die Kalzination gelockert und die Oberfläche vergrößert wäre. Das vertrat er auch in einem Brief an Leonhard Euler 1748. Die Gewichtszunahme bei normaler Kalzination in Gegenwart von Luft führte Lomonossow dagegen korrekt auf die Aufnahme von Bestandteilen der Luft zurück.

Zusammen mit dem „Gesetz der konstanten Proportionen“ (Proust, 1797) und dem „Gesetz der multiplen Proportionen“ (Dalton 1808) machte der Massenerhaltungssatz die zu jener Zeit noch junge Wissenschaft der Chemie zu einer quantitativen Wissenschaft. Eine theoretische Untermauerung fanden die drei Gesetze durch Daltons Atomhypothese.

Experimentell wurde die Massenerhaltung anfangs des 20. Jahrhunderts durch Hans Landolt und Roland von Eötvös mit jeweils hoher Messgenauigkeit bestätigt.[6] Andererseits widersprach bald darauf Albert Einsteins spezielle Relativitätstheorie der strengen Gültigkeit des Satzes, da sich aus dieser Theorie die Äquivalenz von Masse und Energie ergibt. Diese Äquivalenz ist inzwischen experimentell vielfach bestätigt. Daher kann der Massenerhaltungssatz in der Kern- und Hochenergiephysik nicht angewendet werden.

Inhalt und BedeutungBearbeiten

In moderner Formulierung lautet der Satz: Bei einer chemischen Reaktion im geschlossenen System ist die Summe der Masse der Edukte gleich der Summe der Masse der Produkte. Dies gilt in so guter Näherung, dass der Satz für Zwecke der Chemie gültig bleibt.

Ein Anwendungsbeispiel aus dem Alltag: Möchte man wissen, wie viel Kohlenstoffdioxid ein PKW pro gefahrenem Kilometer ausstößt, so muss man nur die Kraftstoffart und den Kraftstoffverbrauch kennen. Ein Liter Diesel enthält etwa 700 Gramm Kohlenstoff, der sich mit 1880 Gramm Sauerstoff zu 2580 Gramm Kohlenstoffdioxid verbindet. Hat das Auto einen Verbrauch von 6 Liter Diesel auf 100 km, so folgt daraus zwangsläufig, dass es 155 g CO2/km ausstößt.

MassendefektBearbeiten

Tatsächlich ist bei Verbrennungen die Masse um einen verschwindend geringen Anteil kleiner als vor der Reaktion, denn die bei exothermen chemischen Reaktionen freigesetzte Energie ist freiwerdende Bindungsenergie. Entsprechend der Masse-Energie-Äquivalenz hat diese Energie eine Masse. Die Gesamtmasse bleibt also nicht gleich, sondern durch den Massendefekt sind die Produkte einer exothermen Reaktion leichter als die Edukte, wenngleich dieser Effekt sehr klein ist. Beim Verbrennen von 1000 Gramm Kohlenstoff mit 2664 Gramm Sauerstoff (Heizwert 32,8 MJ) „verschwinden“ aufgrund des Massendefekts 0,364 µg, d. h. 9,95•10−11 (99,5 Billionstel) der Masse.

In bestimmten physikalischen Teilchenreaktionen, nämlich der Elektron-Positron-Paarvernichtung, „verschwindet“ die ursprüngliche Masse sogar vollständig und es entstehen zwei Photonen, deren Masse Null beträgt.

Auch bei jeder exothermen Kernreaktion tritt ein Massendefekt auf: Die Summe der Massen der entstehenden Teilchen ist kleiner als die Summe der anfänglichen Massen. Da sich an der Masse die Ruheenergie ablesen lässt, haben die entstehenden Atomkerne oder Teilchen weniger Ruheenergie als die anfänglichen Kerne oder Teilchen. Die Gesamtenergie bleibt erhalten, nicht aber die Masse. Insbesondere die von Kernspaltungs- und Kernfusionsreaktionen aus dem Massendefekt freigesetzte Energie kann nach Umwandlung in Wärme technisch genutzt werden.

EinzelnachweiseBearbeiten

  1. Lavoisier, Traité, Band 1, S. 141 (in der Ausgabe von 1801). ...;et l'on peut poser en principes que dans toute opération, il y a une égale quantité de matière avant et apres l'operation; que la qualité et la quantité des principes et la meme, et qu'il n'y a peu des changements, des modifications.
  2. Robert Whitaker, A historical note on the conservation of mass, Band 52, 1975, S. 658–659
  3. Partington, History of Chemistry, Band 3, Macmillan 1962, S. 377
  4. Pomper, Lomonosov and the discovery of the law of the conservation of matter and in chemical transformations, Ambix, Band 10, 1962, S. 119–127
  5. Eine ähnliche Darstellung findet sich in Partington, A History of Chemistry, Macmillan 1962, Band 3, S. 203f
  6. Holleman-Wiberg: Lehrbuch der anorganischen Chemie. 57.–70. Auflage, de Gruyter, 1964, S. 11–12.