Bei der Luftkühlung wird die Oberfläche von wärmeerzeugenden Objekten durch daran vorbeiströmende Luft gekühlt. Bei Verbrennungsmotoren, Elektromotoren oder elektronischen Bauelementen der Leistungselektronik soll die Überhitzung und Zerstörung der Bauteile vermieden werden; bei Kühl- und Klimaanlagen ist für die Funktion die Unterschreitung der Verflüssigungstemperatur des Kältemittels zwingend erforderlich.

AllgemeinesBearbeiten

Die zur Luftkühlung notwendige Luftbewegung kann entweder durch Konvektion, Gebläse oder bei Fahrzeugen durch den Fahrtwind bewirkt werden. Das zu kühlende Objekt steht frei oder wird kanalisiert umflossen. Häufig ist das zu kühlende Objekt auch mit Kühlrippen oder einem Kühlkörper als Wärmeübertrager versehen, die durch eine größere Oberfläche einen größeren Wärmeabfluss ermöglichen.

Luftgekühlte MotorenBearbeiten

Ein prinzipieller Nachteil der Luftkühlung gegenüber der Wasserkühlung besteht darin, dass der Wärmeübergangskoeffizient zwischen Luft und einem Festkörper um etwa den Faktor 50 bis 100 niedriger ist als der Wärmeübergangskoeffizient zwischen Wasser und einem Festkörper. Die Luftkühlung erfordert daher eine größere Kontaktfläche zwischen beiden Medien (die gegebenenfalls durch Kühlrippen erhöht werden kann) und höhere Strömungsgeschwindigkeiten (die gegebenenfalls durch ein Kühlgebläse sichergestellt werden können) als die Wasserkühlung.

VerbrennungsmotorenBearbeiten

Hauptartikel: Kühlung (Verbrennungsmotor)

 
Luftführung beim VW-Käfer
(blau – Kaltluft, rot – Warmluft)

Im Gegensatz zu wassergekühlten Motoren kann ein luftgekühlter Motor bei Temperaturen unter dem Gefrierpunkt nicht durch Gefrieren des Kühlwassers bzw. der Kühlflüssigkeit platzen und bei zu hohen Temperaturen nicht überkochen, weil kein Kühlwasser bzw. keine Kühlflüssigkeit vorhanden ist.

Da bei Pkw mit luftgekühlten Motoren ein leistungsstarkes Kühlgebläse erforderlich ist, das mehr Leistung als die Wasserpumpe einer Wasserkühlung erfordert, ist der Gesamtwirkungsgrad von luftgekühlten Motoren in Pkw schlechter als der von wassergekühlten Motoren. Auch sind luftgekühlte Verbrennungsmotoren durch den fehlenden geräuschdämmenden Wassermantel allgemein mechanisch lauter als flüssigkeitsgekühlte Motoren und eine leistungsfähige Innenraumheizung ist schwerer zu realisieren. Darüber hinaus hängt die Betriebstemperatur und damit auch die Leistung und der Verbrauch eines luftgekühlten Motors stärker von der aktuellen Außentemperatur ab, weswegen viele luftgekühlte Fahrzeuge noch über einen Ölkühler mit Thermostat verfügen. Außerdem können in luftgekühlten Zylinderköpfen Bauteile wie Kanäle, Ventile (Ventilwinkel), Zündkerzen und Einspritzdüsen konstruktiv nicht beliebig so angeordnet werden, wie es ein optimales innermotorisches Abgasverhalten erfordern würde, wodurch die Einhaltung von modernen Abgasvorschriften erschwert wird. Ebenso können thermisch hoch belastete Zonen wie der Bereich zwischen den Auslaßventilsitzen und Zündkerze bei mehrventiligen Anordnungen mit Flüssigkeitskühlung besser beherrscht werden, was ein höheres Verdichtungsverhältnis ohne Klopfgefahr zugunsten der Abgas- und Verbrauchswerte erlaubt. Luftgekühlte Motoren werden daher bei Kraftfahrzeugen immer seltener verwendet.

Automobile wie der Porsche 911, der VW Käfer, der Trabant und der Citroën 2CV, aber auch Lastkraftwagen von Magirus-Deutz, Robur und Tatra wurden mit luftgekühlten Motoren ausgerüstet. Bei Motorrädern findet man luftgekühlte Motoren auch heute noch recht häufig. Firmen wie Harley-Davidson, Buell, Ducati, Moto Guzzi oder BMW haben oder hatten zahlreiche Modelle mit Luftkühlung im aktuellen Programm, im Zuge der EURO4 Norm sind viele Hersteller zur Wasserkühlung übergegangen. Weitere Anwendungen des luftgekühlten Motors sind in Propeller-Flugzeugen und in RC-Cars mit Verbrennungsmotor.


Luftkühlung bei PersonalcomputernBearbeiten

 
Ein Tower-Kühler für Hauptprozessoren mit Heatpipe: der direkte Luftkühler unten ist nur klein und führt nicht genügend Wärme ab; die Wärmeabfuhr erfolgt über die Wärmerohre auf die metallenen, lamellenförmig gestapelten Kühlbleche mit großer Gesamtoberfläche

Im Verhältnis zur Baugröße geht – insbesondere bei Prozessoren ab der Klasse Intel 486/66 – mit der kommerziell wirtschaftlich zur Verfügung stehenden Technologie eine große Wärmeentwicklung einher. Leistungsstarke Mikrochips, wie sie in aktuellen PCs verwendet werden, erzeugen erhebliche Verlustwärme, die überwiegend durch eine Luftkühlung abgeführt wird. Zweck ist, die zulässige Kristalltemperatur der im Prozessor vorhandenen Halbleiter nicht zu überschreiten. Eine Überschreitung bedeutet Zerstörung der Transistor-Halbleiterkristalle durch Anschmelzen oder durch Legieren der Dotierung was einen Kurzschluss auf dem Chip verursachen kann.

Da die Logikbauelemente eines Computers keine Arbeit im physikalischen Sinne verrichten, wird sämtliche aufgenommene elektrische Energie schlussendlich in Wärme umgesetzt. Da bei heutigen Prozessoren die Wärme nicht mehr nur passiv durch Strahlung und passive Kühlkörper abgeführt werden kann, muss die Wärmeabfuhr erhöht werden. Dazu werden an Bauteilen mit hoher Leistungsaufnahmen wie der CPU und der Graphikkarte Kühlkörper und aktive Lüfter installiert. Diese führen die Wärme direkt von den Bauteilen in die Luft im Gehäuse ab. Zusätzlich besitzen fast alle Computer Gehäuselüfter, die für einen stetigen Luftstrom durch das Gehäuse sorgen und somit die Wärme an die Raumluft abgeben.

Alternativ dazu kann die Wärme von den Bauteilen mithilfe einer Wasserkühlung abtransportiert werden, die anschließend über Radiatoren an den Raum abgegeben werden kann.

Weitere AnwendungenBearbeiten

LiteraturBearbeiten

  • Hans Jörg Leyhausen: Die Meisterprüfung im Kfz-Handwerk Teil 1. 12 Auflage, Vogel Buchverlag, Würzburg, 1991, ISBN 3-8023-0857-3
  • Jan Trommelmans: Das Auto und seine Technik. 1. Auflage, Motorbuchverlag, Stuttgart, 1992, ISBN 3-613-01288-X

Siehe auchBearbeiten

WeblinksBearbeiten