In der Unterhaltungsmathematik ist eine Keith-Zahl (englisch Keith number, aber auch repfigit number (kurz für repetitive Fibonacci-like digit)) eine natürliche Zahl , die durch ihre Ziffern eine spezielle mathematische Folge definiert und in ihr enthalten ist.

Sei eine natürliche Zahl mit Ziffern , also

Sei eine mathematische Folge, die mit den Werten beginnt. Jedes weitere Folgenglied ist die Summe der vorhergehenden Folgenglieder. Wenn die Zahl in dieser Folge enthalten ist, dann ist eine Keith-Zahl. Weil einstellige Zahlen diese Eigenschaft trivialerweise erfüllen, werden diese üblicherweise nicht als Keith-Zahlen akzeptiert. Es muss also sein.

Der Mathematiker Mike Keith hat sich im Jahr 1997 als Erster mit diesen Zahlen beschäftigt.[1][2]

Es sind keine schnellen Techniken zur Berechnung von Keith-Zahlen bekannt mit Ausnahme der oben genannten Methode.

Beispiele

Bearbeiten
  • Sei   die  -stellige Zahl  . Dann lauten die ersten Folgenglieder   der Folge   wie folgt:
7, 4, 2, 13, 19, 34, 66, 119, 219, 404, 742, 1365, 2511, 4618, 8494, 15623, 28735, 52852, …
Dabei ist das Folgenglied   die Summe der drei vorhergehenden Glieder   und  . Es ist also  . Zum Beispiel ist  . Weil die  -stellige Zahl   in dieser Folge enthalten ist, ist   eine Keith-Zahl.
  • Sei   die  -stellige Zahl  . Dann lauten die ersten Folgenglieder   der Folge   wie folgt:
3, 4, 2, 8, 5, 22, 41, 78, 154, 300, 595, 1168, 2295, 4512, 8870, 17440, 34285, 67402, 132509, 260506, 512142, 1006844, …
Dabei ist das Folgenglied   die Summe der fünf vorhergehenden Glieder   und  . Es ist also  . Zum Beispiel ist  . Weil die  -stellige Zahl   in dieser Folge enthalten ist, ist   eine Keith-Zahl.
  • Die ersten Keith-Zahlen lauten:
14, 19, 28, 47, 61, 75, 197, 742, 1104, 1537, 2208, 2580, 3684, 4788, 7385, 7647, 7909, 31331, 34285, 34348, 55604, 62662, 86935, 93993, 120284, 129106, 147640, 156146, 174680, 183186, 298320, 355419, 694280, 925993, 1084051, 7913837, 11436171, 33445755, 44121607, … (Folge A007629 in OEIS)
Nimmt man die einstelligen trivialen Keith-Zahlen dazu, erhält man die Folge A130010 in OEIS.
  • Die Anzahl der Keith-Zahlen mit   Stellen kann man der folgenden Liste entnehmen (die Null zu Beginn gilt nur, wenn man die einstelligen trivialen Keith-Zahlen nicht dazunimmt):
0, 6, 2, 9, 7, 10, 2, 3, 2, 0, 2, 4, 2, 3, 3, 3, 5, 3, 5, 3, 1, 1, 3, 1, 1, 3, 7, 1, 2, 5, 2, 4, 6, 3, … (Folge A050235 in OEIS)
Beispiel:
Der obigen Liste kann man an der 17. Stelle die Zahl   entnehmen. Das heißt, es gibt genau   Keith-Zahlen, welche 17 Stellen haben (für die also   gilt).
  • Es gibt nur 99 Keith-Zahlen, welche 30 oder weniger Stellen besitzen. Die 99. Keith-Zahl hat 30 Stellen und ist  .[3]
  • Die momentan (Stand: 30. Dezember 2018) größte bekannte Keith-Zahl ist die folgende:[4][3]
 

Diese Zahl   hat 34 Stellen und wurde von Daniel Lichtblau am 26. August 2009 entdeckt.

Eigenschaften

Bearbeiten
  • Es gibt keine Keith-Zahlen, die gleichzeitig Repdigits sind (also nur aus denselben Ziffern bestehen).[4]

Vermutungen

Bearbeiten
  • Es wird vermutet, dass es unendlich viele Keith-Zahlen gibt.[3]
Keith behauptet aufgrund von Erfahrungswerten, dass es   Keith-Zahlen zwischen   und   für   gibt.[2]
  • Es gibt keine  -stelligen Keith-Zahlen. Es wird vermutet, dass es noch weitere   gibt, für welche es keine  -stelligen Keith-Zahlen gibt.[2]
  • Man definiere einen Keith-Cluster als eine Menge von zwei oder mehr Keith-Zahlen mit exakt gleich vielen Stellen, bei der alle Keith-Zahlen ganzzahlige Vielfache der ersten Keith-Zahl in diesem Cluster sind. Es sind nur drei solche Cluster bekannt:
  und  
Keith vermutet, dass diese drei Cluster die einzigen sind. Er gibt aber zu, keine Ahnung zu haben, wie man das beweisen könnte.[2]

Keith-Primzahlen

Bearbeiten

Eine Keith-Zahl, die prim ist, nennt man Keith-Primzahl.

Beispiele

Bearbeiten
  • Die kleinsten Keith-Primzahlen sind die folgenden:
19, 47, 61, 197, 1084051, 74596893730427, … (Folge A048970 in OEIS)

Verallgemeinerungen

Bearbeiten

Bisher wurden nur Keith-Zahlen im Dezimalsystem, also zur Basis   behandelt. Die Keith-Zahl   wäre zum Beispiel zur Basis   die Zahl   und mit dieser Basis   hätte man keine Keith-Zahl (die dazugehörige Folge wäre   und man kann erkennen, dass   keine Keith-Zahl ist, weil sie in der Folge nicht vorkommt). Daher spielt die jeweilige Basis eine große Rolle bei Keith-Zahlen.

Eine Keith-Zahl zur Basis   ist eine natürliche Zahl  , die durch ihre Ziffern zur Basis   eine spezielle mathematische Folge definiert und in ihr enthalten ist.

Beispiele

Bearbeiten
  • Sei   eine Zahl im Duodezimalsystem, also zur Basis  . Dann erhält man folgende Folge (dabei ist aus Ermangelung an weiteren Ziffern   und  ):
 
Man kann erkennen, dass die Zahl   tatsächlich in der Folge vorkommt. Somit ist   eine Keith-Zahl zur Basis  .
  • Die folgenden Zahlen sind die kleinsten Keith-Zahlen zur Basis  , also im Duodezimalsystem:
11, 15, 1B, 22, 2A, 31, 33, 44, 49, 55, 62, 66, 77, 88, 93, 99, AA, BB, 125, 215, 24A, 405, 42A, 654, 80A, 8A3, A59, 1022, 1662, 2044, 3066, 4088, 4A1A, 4AB1, 50AA, 8538, B18B, 17256, 18671, 24A78, 4718B, 517BA, 157617, 1A265A, 5A4074, 5AB140, 6B1449, 6B8515, …

Umgekehrte Keith-Zahlen

Bearbeiten

Sei   eine natürliche Zahl mit   Ziffern  , also

 

Sei   eine mathematische Folge, die mit den Werten   beginnt. Jedes weitere Folgenglied ist die Summe der vorhergehenden   Folgenglieder. Wenn die Zahl   in dieser Folge   in umgekehrter Reihenfolge (also mit vertauschten Ziffern) enthalten ist, dann ist   eine umgekehrte Keith-Zahl (englisch reverse Keith number, aber auch revrepfigit number (kurz für reverse replicating Fibonacci-like digit)). Weil einstellige Zahlen diese Eigenschaft trivialerweise erfüllen, werden diese üblicherweise nicht als umgekehrte Keith-Zahlen akzeptiert. Es muss also   sein.[3] Es ist nicht bekannt, ob es unendlich viele umgekehrte Keith-Zahlen gibt.[3]

Beispiele

Bearbeiten
  • Sei   die  -stellige Zahl  . Dann lauten die ersten Folgenglieder   der Folge   wie folgt:
3, 4, 1, 8, 13, 22, 43, 78, 143, 264, 485, 892, 1641, 3018, 5551, …

Dabei ist das Folgenglied   die Summe der drei vorhergehenden Glieder   und  . Es ist also  . Zum Beispiel ist  . Weil die  -stellige Zahl   in dieser Folge enthalten ist und   genau die umgekehrte Ziffernfolge von   ist, ist   eine umgekehrte Keith-Zahl.

  • Die folgenden Zahlen sind die kleinsten umgekehrten Keith-Zahlen:[3]
12, 24, 36, 48, 52, 71, 341, 682, 1285, 5532, 8166, 17593, 28421, 74733, 90711, 759664, 901921, 1593583, 4808691, 6615651, 6738984, 8366363, 8422611, 26435142, 54734431, 57133931, 79112422, 89681171, 351247542, 428899438, 489044741, 578989902, … (Folge A097060 in OEIS)
Man beachte, dass es keine umgekehrten Keith-Zahlen gibt, die mit einer Null enden. Diese sind nicht erlaubt, zumal diese Nullen, wenn man die Ziffern der Zahl umdreht, zu Beginn wären und eine Null zu Beginn nicht erlaubt ist.
  • Die folgenden Zahlen sind die kleinsten umgekehrten Keith-Primzahlen:[3]
71, 1593583, 54734431, …

Einzelnachweise

Bearbeiten
  1. Mike Keith: Repfigit Numbers. Hrsg.: J. Recr. Math. Band 19, Nr. 2, 1987, S. 41–42.
  2. a b c d Mike Keith: Keith Numbers. Abgerufen am 30. Dezember 2018 (englisch).
  3. a b c d e f g Eric W. Weisstein: Keith Number. In: MathWorld (englisch).
  4. a b Jhon J. Bravo, Sergio Guzmán, Florian Luca: Repdigit Keith numbers. Lithuanian Mathematical Journal 53 (2), 2013, S. 143–148, abgerufen am 30. Dezember 2018 (englisch).
Bearbeiten