1 Wasserstoff

Bearbeiten

1. Wasserstoff- Symbol H (für lateinisch hydrogenium „Wassererzeuger“; von altgriechisch ὕδωρ hydōr „Wasser“ und γίγνομαι gignomai „werden, entstehen“) und der Ordnungszahl 1. Im Periodensystem steht es in der 1. Periode und der 1. Gruppe, nimmt also den ersten Platz ein. Entdeckt wurde Wasserstoff vom englischen Chemiker und Physiker Henry Cavendish im Jahre 1766, als er mit Metallen (Eisen, Zink und Zinn) und Säuren experimentierte. Cavendish nannte das dabei entstandene Gas wegen seiner Brennbarkeit "inflammable air". Er untersuchte das Gas eingehend und veröffentlichte seine Erkenntnisse darüber noch im selben Jahr. Eine genauere Analyse geschah durch Antoine Laurent de Lavoisier, der dem Wasserstoff auch seinen Namen gab. Der französische Chemiker entdeckte das Gas im Jahr 1787 unabhängig von Cavendish, als er in einem Experiment zeigen wollte, dass bei chemischen Reaktionen keine Masse verloren geht oder erzeugt wird. Er leitete Wasserdampf in einer abgeschlossenen Apparatur über glühende Eisenspäne und ließ ihn an anderer Stelle kondensieren. Dabei stellte er fest, dass die Masse des kondensierten Wassers etwas geringer war als die der ursprünglichen Menge. Dafür entstand ein Gas, dessen Masse zusammen mit dem Gewichtszuwachs des oxidierten Eisens genau der „verlorengegangenen“ Wassermenge entsprach. Sein eigentliches Experiment war also erfolgreich.

1. Wasserstoff- Symbol H (für lateinisch hydrogenium „Wassererzeuger“; von altgriechisch ὕδωρ hydōr „Wasser“ und γίγνομαι gignomai „werden, entstehen“) und der Ordnungszahl 1. Im Periodensystem steht es in der 1. Periode und der 1. Gruppe, nimmt also den ersten Platz ein. Entdeckt wurde Wasserstoff vom englischen Chemiker und Physiker Henry Cavendish im Jahre 1766, als er mit Metallen (Eisen, Zink und Zinn) und Säuren experimentierte. Cavendish nannte das dabei entstandene Gas wegen seiner Brennbarkeit "inflammable air". Er untersuchte das Gas eingehend und veröffentlichte seine Erkenntnisse darüber noch im selben Jahr. Eine genauere Analyse geschah durch Antoine Laurent de Lavoisier, der dem Wasserstoff auch seinen Namen gab. Der französische Chemiker entdeckte das Gas im Jahr 1787 unabhängig von Cavendish, als er in einem Experiment zeigen wollte, dass bei chemischen Reaktionen keine Masse verloren geht oder erzeugt wird. Er leitete Wasserdampf in einer abgeschlossenen Apparatur über glühende Eisenspäne und ließ ihn an anderer Stelle kondensieren. Dabei stellte er fest, dass die Masse des kondensierten Wassers etwas geringer war als die der ursprünglichen Menge. Dafür entstand ein Gas, dessen Masse zusammen mit dem Gewichtszuwachs des oxidierten Eisens genau der „verlorengegangenen“ Wassermenge entsprach. Sein eigentliches Experiment war also erfolgreich.

1. Wasserstoff- Symbol H (für lateinisch hydrogenium „Wassererzeuger“; von altgriechisch ὕδωρ hydōr „Wasser“ und γίγνομαι gignomai „werden, entstehen“) und der Ordnungszahl 1. Im Periodensystem steht es in der 1. Periode und der 1. Gruppe, nimmt also den ersten Platz ein. Entdeckt wurde Wasserstoff vom englischen Chemiker und Physiker Henry Cavendish im Jahre 1766, als er mit Metallen (Eisen, Zink und Zinn) und Säuren experimentierte. Cavendish nannte das dabei entstandene Gas wegen seiner Brennbarkeit "inflammable air". Er untersuchte das Gas eingehend und veröffentlichte seine Erkenntnisse darüber noch im selben Jahr. Eine genauere Analyse geschah durch Antoine Laurent de Lavoisier, der dem Wasserstoff auch seinen Namen gab. Der französische Chemiker entdeckte das Gas im Jahr 1787 unabhängig von Cavendish, als er in einem Experiment zeigen wollte, dass bei chemischen Reaktionen keine Masse verloren geht oder erzeugt wird. Er leitete Wasserdampf in einer abgeschlossenen Apparatur über glühende Eisenspäne und ließ ihn an anderer Stelle kondensieren. Dabei stellte er fest, dass die Masse des kondensierten Wassers etwas geringer war als die der ursprünglichen Menge. Dafür entstand ein Gas, dessen Masse zusammen mit dem Gewichtszuwachs des oxidierten Eisens genau der „verlorengegangenen“ Wassermenge entsprach. Sein eigentliches Experiment war also erfolgreich.

2 Helium

Bearbeiten

2. Helium (altgr. ἥλιος hélios „Sonne“) - Elementsymbol He und der Ordnungszahl 2. Im Periodensystem steht es in der 18. Gruppe (früher 8. Hauptgruppe - WARUM ???), ein Edelgas; Hinweise auf das Element Helium erhielt man zum ersten Mal aufgrund einer hellen gelben Spektrallinie bei einer Wellenlänge von 587,49 Nanometern im Spektrum der Chromosphäre der Sonne. Diese Beobachtung machte der französische Astronom Jules Janssen während einer totalen Sonnenfinsternis in Indien am 18. August 1868. Als er seine Entdeckung bekannt machte, wollte ihm zunächst niemand glauben, da bislang noch nie ein neues Element im Weltall gefunden wurde, bevor der Nachweis auf der Erde geführt werden konnte. Am 20. Oktober desselben Jahres bestätigte der Engländer Norman Lockyer, dass die gelbe Linie tatsächlich im Sonnenspektrum vorhanden ist und schloss daraus, dass sie von einem bislang unbekannten Element verursacht wurde. Weil diese Spektrallinie nahe an der so genannten Fraunhofer D-Linie lag, nannte er die Linie D3, um sie von den nahe liegenden D1- und D2-Linien des Natriums unterscheiden zu können. Er und sein englischer Kollege Edward Frankland schlugen vor, das neue Element nach dem griechischen Wort für Sonne zu benennen. Da sie annahmen, dass es sich bei dem Element um ein Metall handelte, hängten sie statt der für Edelgase üblichen Endung -on die neutrale Endung -ium an. Luigi Palmieri gelang es 1882, durch die Spektralanalyse von Vesuv-Lava erstmals das Element Helium auf der Erde nachzuweisen. Am 23. März 1895 gewann der britische Chemiker William Ramsay Helium, indem er das Uran-Mineral Cleveit, eine Varietät des Uraninits, mit Mineralsäuren versetzte und das dabei austretende Gas isolierte.

3 Lithium

Bearbeiten

3. Lithium [ˈliːtiʊm] (abgeleitet von altgriechisch λίθος líthos „Stein“), oft auch fälschlicherweise [ˈliːtsiʊm] ausgesprochen, ist ein chemisches Element mit dem Symbol Li und der Ordnungszahl 3. Den Namen Lithium bekam das Element, weil es im Gegensatz zu Natrium und Kalium im Gestein entdeckt wurde. Es ist das Alkalimetall der zweiten Periode des Periodensystems der Elemente. Lithium ist ein Leichtmetall und besitzt die kleinste Dichte der unter Standardbedingungen festen Elemente. In elementarer Form reagiert es wie alle Alkalimetalle schon in Berührung mit der Hautfeuchtigkeit und führt so zu schweren Verätzungen und Verbrennungen. Seine Verbindungen sind gesundheitsschädlich, allerdings in weitaus geringerem Maße als die seines Periodennachbarn Beryllium. Lithium wurde 1817 von Johan August Arfwedson entdeckt. Es kommt in der Natur aufgrund seiner hohen Reaktivität nicht elementar vor.

4 Beryllium

Bearbeiten

Beryllium ist ein chemisches Element mit dem Symbol Be und der Ordnungszahl 4. Der Name lässt sich vom Mineral Beryll, einem berylliumhaltigen Schmuckstein, ableiten (altgriechisch βήρυλλος beryllos, lateinisch beryllus). Das lateinische beryllus wurde im Mittelalter als Oberbegriff für alle klaren Kristalle gebraucht: So leitet sich davon auch das Wort Brille („Augengläser“) ab, da die ersten Linsen aus Kristall geschliffen wurden. Die Ableitung erfolgt parill zu prill und brill. Im Periodensystem steht Beryllium in der zweiten Hauptgruppe und zählt daher zu den Erdalkalimetallen. Als Element der zweiten Periode zählt es zu den leichten Erdalkalimetallen. Bemerkenswert ist jedoch, dass es eine höhere Dichte als seine beiden Homologen Magnesium und Calcium hat. Das stahlgraue Leichtmetall ist sehr hart und spröde und wird meist als Legierungszusatz verwendet. In Verbindungen ist es zweiwertig. isolierte der französische Chemiker Louis-Nicolas Vauquelin 1798 das Beryllium in Form seines Oxids aus den Edelsteinen Beryll und Smaragd. Das chemische Symbol Be wurde 1814 von J.J. Berzelius eingeführt. Erst 1828 gelang es Friedrich Wöhler und Antoine Bussy, das Element durch die Reduktion des Berylliumchlorids mit Kalium darzustellen. Wegen des süßen Geschmackes der Berylliumsalze wurde in Frankreich noch bis 1957 Vauquelins Namensvorschlag Glucinium (griech. γλυκύς = süß) verwendet. 1945 wurde Beryllium zusammen mit dem Alphastrahler Polonium als Neutronenquelle in der Atombombe Little Boy, die über Hiroshima abgeworfen wurde, eingesetzt.

5. Bor ist ein chemisches Element mit dem Elementsymbol B und der Ordnungszahl 5. Im Periodensystem steht es in der 3. Hauptgruppe oder Borgruppe sowie der zweiten Periode. Das dreiwertige, seltene Halbmetall kommt angereichert in einigen abbauwürdigen Lagerstätten vor. Borverbindungen (von persisch burah über arabisch Buraq und (griech. βοραχου bzw. lat. borax „borsaures Natron“, „Borax“) sind seit Jahrtausenden bekannt. Im alten Ägypten nutzte man zur Mumifikation das Mineral Natron, das neben anderen Verbindungen auch Borate enthält. Seit dem 4. Jahrhundert wird Boraxglas im Kaiserreich China verwendet. Borverbindungen wurden im antiken Rom zur Glasherstellung verwendet. 1824 erkannte Jöns Jacob Berzelius den elementaren Charakter des Stoffes.

6 Kohlenstoff

Bearbeiten

6. Kohlenstoff (von altgerm. kulo(n) = „Kohle“) oder Carbon (von lat. carbo „Holzkohle“, latinisiert Carboneum) ist ein chemisches Element mit dem Elementsymbol C und der Ordnungszahl 6. Im Periodensystem steht es in der vierten Hauptgruppe oder Kohlenstoffgruppe sowie der zweiten Periode. Es kommt in der Natur sowohl in gediegener (reiner) Form (Diamant, Graphit) als auch chemisch gebunden (z. B. in Form von Carbonaten, Kohlenstoffdioxid, Erdöl, Erdgas und Kohle) vor. Aufgrund seiner besonderen Elektronenkonfiguration (halbgefüllte L-Schale) besitzt es die Fähigkeit zur Bildung von komplexen Molekülen und weist von allen chemischen Elementen die größte Vielfalt an chemischen Verbindungen auf. Kohlenstoffverbindungen bilden die molekulare Grundlage allen irdischen Lebens.

7 Stickstoff

Bearbeiten

7. Stickstoff (lat. Nitrogenium) ist ein chemisches Element mit der Ordnungszahl 7 und dem Elementsymbol N. Es leitet sich von der lateinischen Bezeichnung nitrogenium ab (von altgriech. νιτρον nitron „Laugensalz“ und γενος genos „Herkunft“). Die deutsche Bezeichnung Stickstoff erinnert daran, dass molekularer Stickstoff Flammen löscht („erstickt“) oder dass in reinem Stickstoff Lebewesen ersticken. Im Periodensystem steht es in der fünften Hauptgruppe oder Stickstoffgruppe sowie der zweiten Periode. Elementar tritt Stickstoff nur in Form eines kovalenten Homodimers auf, einer chemischen Verbindung aus zwei Stickstoff-Atomen (molekularer Stickstoff, auch Distickstoff, Summenformel N2); er ist mit 78 % der Hauptbestandteil der Luft. Im Laufe der Evolution hat sich ein Stickstoffkreislauf der Ökosysteme ausgebildet: Als Bestandteil von Proteinen und vielen anderen Naturstoffen ist Stickstoff essentiell für Lebewesen, die ihn in einem energieintensiven Prozess (Stickstofffixierung) organisch binden und bioverfügbar machen. Chemische Verbindungen des Stickstoffs, wie Nitrate und Ammoniumsalze, wurden schon von Alchemisten verwendet. Carl Wilhelm Scheele wies 1771 Stickstoff als Bestandteil der Luft nach. Erstmals im Jahr 1774 wurde Ammoniak von Joseph Priestley dargestellt. Bis zum Anfang des 20. Jahrhundert war Salpeter die einzige große Quelle von Stickstoffverbindungen. Durch die Einführung des Frank-Caro-Verfahrens (Kalkstickstofferzeugung nach Adolph Frank und Nikodem Caro) wurde der Luftstickstoff erstmals nutzbar gemacht.

8 Sauerstoff

Bearbeiten

8. Sauerstoff (auch Oxygenium genannt ; von griechisch ὀξύς ‚oxys‘ „scharf, spitz, sauer“ und γεννάω ‚gen-‘ „erzeugen, gebären“, zusammen „Säure-Erzeuger“) ist ein chemisches Element mit dem Elementsymbol O und der Ordnungszahl 8. Im Periodensystem steht es in der sechsten Hauptgruppe, gehört also zu den Chalkogenen. Sauerstoff ist das häufigste Element auf der Erde. Elementar tritt Sauerstoff überwiegend in Form eines kovalenten Homodimers auf, also einer Verbindung aus zwei Sauerstoff-Atomen und mit der Summenformel O2, bezeichnet als molekularer Sauerstoff, Dioxygen oder Disauerstoff. Es ist ein farb- und geruchloses Gas, das in der Luft zu 20,942 % enthalten ist. Es ist an vielen Verbrennungs- und Korrosionsvorgängen beteiligt. Fast alle Lebewesen benötigen Sauerstoff zum Leben (in der Regel geben Pflanzen aber während der Photosynthese mehr Sauerstoff ab als sie verbrauchen). Sie entnehmen ihn meistens durch Atmung aus der Luft oder durch Resorption aus Wasser (gelöster Sauerstoff). In hohen Konzentrationen dagegen ist er für die meisten Lebewesen giftig. -- Carl Wilhelm Scheele im Jahre 1771 und Joseph Priestley im Jahre 1774 haben unabhängig voneinander im Zusammenhang mit der Erforschung von Verbrennungsvorgängen den Sauerstoff entdeckt.

9. Fluor [ˈfluːoːr] ist ein chemisches Element mit dem Symbol F und der Ordnungszahl 9. Im Periodensystem steht es in der 7. Hauptgruppe und gehört damit zu den Halogenen. Es liegt unter Normalbedingungen in Form des zweiatomigen Moleküls F2 gasförmig vor, ist äußerst reaktiv und sehr giftig. Bereits in geringen Konzentrationen kann sein durchdringender Geruch bemerkt werden. Fluor ist farblos und erscheint stark verdichtet blassgelb. Es ist das elektronegativste aller Elemente und hat in Verbindungen mit anderen Elementen – mit wenigen Ausnahmen – stets die Oxidationsstufe −1. Es reagiert mit allen Elementen mit Ausnahme der Edelgase Helium und Neon. Der Name des Elementes leitet sich von lat. fluor „Fluss“ ab. Der Ursprung liegt darin, dass das wichtigste natürlich vorkommende Mineral Fluorit (Flussspat) in der Metallurgie als Flussmittel zur Herabsetzung des Schmelzpunktes von Erzen verwendet wurde. -- Elementares Fluor ist sehr giftig und stark ätzend. Lösliche Fluoride sind in höherer Konzentration ebenfalls sehr giftig, in Spuren möglicherweise essentiell für den Aufbau von Knochen und Zähnen. Sie werden deswegen teilweise dem Trinkwasser und Speisesalz zugesetzt (Fluoridierung). -- Das erste beschriebene Fluorsalz war das natürlich vorkommende Calciumfluorid (Flussspat). Es wurde 1530 von Georgius Agricola beschrieben und 1556 von ihm als Hilfsmittel zum Schmelzen von Erzen erwähnt.[7] Es macht Erzschmelzen und Schlacken dünnflüssiger, lässt sie fließen (Flussmittel). Carl Wilhelm Scheele beschäftigte sich erstmals eingehender mit Flussspat und seinen Eigenschaften. Er entdeckte die Flusssäure und ihre ätzende Wirkung auf Glas (Siliciumdioxid). Eine weitere Eigenschaft, die er an Flussspat entdeckte, war die Fluoreszenz, die nach dem Mineral benannt ist. -- 1811 wurde von Humphry Davy erstmals vorhergesagt, dass Fluor ein eigenständiges Element ist. Danach versuchten viele Chemiker, das reine Element zu gewinnen. Auf Grund der Schwierigkeiten, die durch die Reaktivität und Giftigkeit entstanden, dauerte es bis zum 28. Juni 1886, als es Henri Moissan erstmals gelang, elementares Fluor herzustellen. Er schaffte dies durch Elektrolyse einer Lösung von Kaliumhydrogendifluorid in flüssigem Fluorwasserstoff bei tiefen Temperaturen. Für diese Leistung bekam Moissan den Nobelpreis für Chemie im Jahr 1906 verliehen.

10. Neon (griechisch νέος neos „neu“) ist ein chemisches Element mit dem Symbol Ne und der Ordnungszahl 10. -- Im Periodensystem steht es in der 8. Hauptgruppe (Gruppe 18) und zählt daher zu den Edelgasen. Wie die anderen Edelgase ist es ein farbloses, äußerst reaktionsträges, einatomiges Gas. In vielen Eigenschaften wie Schmelz- und Siedepunkt oder Dichte steht es zwischen dem leichteren Helium und dem schwereren Argon. -- Im Universum gehört Neon zu den häufigsten Elementen, auf der Erde ist es dagegen relativ selten, da wie bei Helium ein großer Teil des Gases in das Weltall entwichen ist. Vorwiegend ist es in der Erdatmosphäre zu finden, nur geringe Mengen sind in Gesteinen eingeschlossen. -- Wie Krypton und Xenon wurde auch Neon 1898 von William Ramsay und Morris William Travers durch fraktionierte Destillation von flüssiger Luft entdeckt. Die bekannteste Anwendung sind die Leuchtröhren oder Neonlampen, in denen Neon durch Gasentladungen in einer typischen orangeroten Farbe zum Leuchten angeregt wird. -- 1894 war von Lord Rayleigh und William Ramsay als erstes Edelgas das Argon entdeckt worden. Ramsay isolierte 1895 auch das zuvor nur aus dem Sonnenspektrum bekannte Helium aus Uranerzen. Aus den Gesetzen des Periodensystems erkannte er, dass es zwischen Helium und Argon ein weiteres Element mit einer Atommasse von etwa 20 u geben müsste. Er untersuchte daher ab 1896 zunächst verschiedene Minerale und Meteoriten und die von diesen beim Erhitzen oder Lösen abgegebenen Gase. Ramsay und sein Mitarbeiter Morris William Travers waren dabei jedoch nicht erfolgreich, es wurden Helium und seltener Argon gefunden. Auch die Untersuchung heißer Gase aus Cauterets in Frankreich und aus Island brachten keine Ergebnisse. -- Die erste Anwendung des neu entdeckten Gases war die 1910 von dem Franzosen Georges Claude entwickelte Neonlampe: In eine Glasröhre gefülltes Neon wird durch hohe Spannungen zum Leuchten angeregt.

11 Natrium

Bearbeiten

11. Natrium ist ein häufig vorkommendes chemisches Element mit dem Symbol Na und der Ordnungszahl 11. Im Periodensystem der Elemente steht es in der 3. Periode und als Alkalimetall in der 1. Gruppe beziehungsweise 1. Hauptgruppe. Natrium ist ein Reinelement, dessen einziges stabiles Isotop 23Na ist. -- Elementares Natrium wurde erstmals 1807 von Humphry Davy durch Schmelzflusselektrolyse aus Natriumhydroxid gewonnen und Sodium genannt. Diese Bezeichnung wird u. a. im englischen und französischen Sprachraum verwendet, Ableitungen hiervon in den romanischen und zum Teil auch in slawischen Sprachen. Der deutsche Name „Natrium“ ist über das arabische ‏ناترون‎ „natrun“, „Natron“, vom ägyptischen „netjerj“ abgeleitet. Natrium und Ableitungen hiervon sind außer in der deutschen Sprache u. a. auch in Skandinavien, im Niederländischen und einigen slawischen Sprachen in Verwendung. -- Natrium gehört zu den zehn häufigsten Elementen in der Erdhülle und kommt dabei in zahlreichen natriumhaltigen Mineralen im Land- und Meeresboden vor. -- Die Ägypter prägten in der Antike für das aus Sodaseen gewonnene Soda den Begriff netjerj (neter). Die Griechen übernahmen dieses Wort als griech. νίτρον = nitron, die Römer als nitrium, die Araber als natrun. Natriumverbindungen sind im Gegensatz zum elementaren Metall schon sehr lange bekannt und wurden seither aus Meerwasser oder Seen gewonnen, aus Erdlagerstätten abgebaut und gehandelt. Die wichtigste Natriumverbindung Kochsalz (Natriumchlorid) wurde in Bergwerken oder durch Trocknen von Meerwasser oder salzhaltigem Quellwasser in Salinen gewonnen. Der Handel mit Salz war für viele Städte die Grundlage ihres Reichtums, und prägte teils sogar ihren Namen (Salzgitter, Salzburg).

12 Magnesium

Bearbeiten

12. Magnesium ist ein chemisches Element mit dem Elementsymbol Mg und der Ordnungszahl 12. Im Periodensystem steht es in der zweiten Hauptgruppe und gehört damit zu den Erdalkalimetallen. Es hat zwei Außenelektronen (Valenzelektronen), wodurch die Chemie des Magnesiums bestimmt wird. Als achthäufigstes Element ist es zu etwa 1,94 % am Aufbau der Erdkruste beteiligt. - Die Herkunft der Elementbezeichnung wird in der Literatur unterschiedlich dargestellt: 1. von altgriech. μαγνησιη λιθός in der Bedeutung „Magnetstein“, 2. von Magnisia, einem Gebiet im östlichen Griechenland, 3. von Magnesia, einer Stadt in Kleinasien auf dem Gebiet der heutigen Türkei. -- Magnesiumverbindungen waren schon Jahrhunderte vor der Herstellung elementaren Magnesiums bekannt und in Gebrauch. Magnesia alba bezeichnete Magnesiumcarbonat, während Magnesia der gebräuchliche Name für Magnesiumoxid war. -- Der schottische Physiker und Chemiker Joseph Black war der erste, der Magnesiumverbindungen im 18. Jahrhundert systematisch untersuchte. 1755 erkannte er in seinem Werk De humore acido a cibis orto et Magnesia alba den Unterschied zwischen Kalk (Calciumcarbonat) und Magnesia alba (Magnesiumcarbonat), die zu dieser Zeit oft verwechselt wurden. Er fasste Magnesia alba als Carbonat eines neuen Elements auf. Deswegen wird Black oft als Entdecker des Magnesiums genannt, obwohl er nie elementares Magnesium darstellte. -- 1808 gewann Sir Humphry Davy Magnesium durch Elektrolyse angefeuchteten Magnesiumhydroxids mit Hilfe einer Voltaschen Säule – allerdings nicht in reiner Form, sondern als Amalgam, da er mit einer Kathode aus Quecksilber arbeitete. So zeigte er, dass Magnesia das Oxid eines neuen Metalls ist, das er zunächst Magnium nannte. -- 1828 gelang es dem französischen Chemiker Antoine Bussy durch das Erhitzen von trockenem Magnesiumchlorid mit Kalium als Reduktionsmittel, geringe Mengen von reinem Magnesium darzustellen.

13 Aluminium

Bearbeiten

13. Aluminium ist ein chemisches Element mit dem Elementsymbol Al und der Ordnungszahl 13. Die Bezeichnung leitet sich vom lateinischen Wort alumen für Alaun ab. Alaun wurde früher nur das kristallisierte wasserhaltige schwefelsaure Doppelsalz von Kalium und Aluminium (Kaliumaluminiumsulfat) genannt. -- Im Periodensystem gehört Aluminium zur dritten Hauptgruppe oder Borgruppe, die früher auch als Gruppe der Erdmetalle bezeichnet wurde. Aluminium ist das dritthäufigste Element und häufigste Metall in der Erdkruste. Dort tritt es wegen seiner Reaktionsfreudigkeit fast nur in chemisch gebundenem Zustand auf. -- Aluminium ist im Vergleich zu anderen Metallen noch nicht lange bekannt. Erst im Jahre 1808 beschrieb es Sir Humphry Davy als „Aluminum“ und versuchte seine Herstellung. Die gelang erstmalig Hans Christian Ørsted 1825 durch Reaktion von Aluminiumchlorid (AlCl3) mit Kaliumamalgam, wobei Kalium als Reduktionsmittel dient. -- Wöhler verwendete 1827 die gleiche Methode, nahm zur Reduktion jedoch metallisches Kalium und erhielt damit ein reineres Aluminium. Zu jener Zeit war der Preis von Aluminium höher als der von Gold. -- Henri Etienne Sainte-Claire Deville verfeinerte den Wöhler-Prozess im Jahr 1846 und publizierte ihn 1859 in einem Buch. Dadurch fiel der Aluminiumpreis innerhalb von zehn Jahren um 90 %. -- 1886 wurde unabhängig voneinander durch Charles Martin Hall und Paul Héroult das jetzt nach ihnen benannte Elektrolyseverfahren zur Herstellung von Aluminium entwickelt.

14 Silicium

Bearbeiten

14. Silicium (auch Silizium geschrieben) ist ein chemisches Element mit dem Symbol Si und der Ordnungszahl 14. Es steht in der 4. Hauptgruppe (Tetrele) und 3. Periode des Periodensystems der Elemente. -- Silicium ist ein klassisches Halbmetall, weist daher sowohl Eigenschaften von Metallen als auch von Nichtmetallen auf und ist ein Elementhalbleiter. Reines, elementares Silicium besitzt eine grau-schwarze Farbe und weist einen typisch metallischen, oftmals bronzenen bis bläulichen Glanz auf. -- Elementares Silicium ist für den menschlichen Körper ungiftig, in gebundener silicatischer Form ist Silicium für den Menschen wichtig. -- Standardsprachlich wird das Element ‚Silizium‘ geschrieben, die Schreibweise mit ‚c‘ ist vor allem in der chemischen Fachsprache gebräuchlich. Beide Schreibweisen entstammen dem lateinischen Ausdruck silicia ‚Kieselerde‘, verknüpft mit lat. silex ‚Kieselstein‘. Kieselerde ist historisch bedingt ein unscharfer Begriff für Mineralien und Sedimente mit hohem Siliciumgehalt. Ursprünglich bezeichnete man so Mineralien, die sich wegen ihres Quarzgehalts zur Herstellung von Glas eignen. -- Die englische Übersetzung für Silicium lautet silicon, z. B. im Begriff Silicon Valley (dt. ‚Silizium-Tal‘) zu finden. Die gelegentlich anzutreffende Übersetzung silicone ‚Silikon‘ ist ein falscher Freund. -- Aufgrund ihrer scharfen Schnittkanten fanden siliciumhaltige Gesteine in der Steinzeit auch Einsatz als Werkzeuge. Bereits in vorgeschichtlicher Zeit ist zum Beispiel Obsidian als besonders geeignetes Werkzeugmaterial abgebaut und durch Handel weithin verbreitet worden. Auch Feuerstein wurde in Kreidegebieten, etwa in Belgien und Dänemark, bergmännisch gewonnen. Bei der Metallgewinnung, insbesondere bei der Stahlherstellung, wird Silicat-Schlacke zum Schutz der Herde und Öfen vor Sauerstoffzutritt und als Form aus Ton oder Sand eingesetzt; dabei wurde möglicherweise die Glasherstellung entdeckt. -- Als Element wurde Silicium vermutlich zum ersten Mal von Antoine Lavoisier im Jahre 1787 und unabhängig davon von Humphry Davy im Jahre 1800 hergestellt, fälschlicherweise jedoch für eine Verbindung gehalten. Im Jahre 1811 stellten der Chemiker Joseph Louis Gay-Lussac und Louis Jacques Thénard (vgl. Thénards Blau) unreines und amorphes Silicium (a-Si, die nichtkristalline, allotropische Form des Siliciums) her.

15 Phosphor

Bearbeiten

15 Phosphor (von griechisch φως-φορος phosphoros „lichttragend“, vom Leuchten des weißen Phosphors bei der Reaktion mit Sauerstoff) ist ein chemisches Element mit dem Symbol P und der Ordnungszahl 15. Im Periodensystem steht es in der fünften Hauptgruppe oder Stickstoffgruppe. -- Phosphor kommt in mehreren, sich untereinander stark unterscheidenden Modifikationen vor, deren am einfachsten herzustellende, thermodynamisch aber nicht stabilste der aus P4-Molekülen aufgebaute weiße Phosphor ist. -- Phosphor wurde 1669 von Hennig Brand, einem deutschen Apotheker und Alchemisten, entdeckt, als dieser – auf der Suche nach dem „Stein der Weisen“ – Urin bis zur Trocknung eindampfte. Als er den Rückstand unter Luftabschluss glühte, entstand durch Reduktion mit organischer Materie weißer Phosphor, der im Dunkeln aufgrund der Chemolumineszenz leuchtete. Obwohl Phosphor zu dieser Zeit noch keine Verwendung außer als Nachtlampe fand, wurde er mit Gold aufgewogen. Hennig Brand wurde durch diese Entdeckung nicht reich und verkaufte das Herstellungsrezept an einen Alchemisten, der damit ein Vermögen machte. Johann Daniel Kraft, besagter Alchimist, demonstrierte die Herstellung von Phosphor 1677 vor Robert Boyle. Bemerkenswert ist, dass Hennig Brand seinen Phosphorus in Hannover auch dem Wissenschaftler und Philosophen Gottfried Wilhelm Leibniz vorstellte, der aus Begeisterung über den geheimnisvollen Lichtträger „Phosphorus Mirabilis“ ein Gedicht verfasste. -- Weißer Phosphor wurde anfangs auf Grund seiner faszinierenden Eigenschaft – der Phosphoreszenz – als Heilmittel verwendet. Später erhielt er eine wichtige Bedeutung bei der Streichholzherstellung; da weißer Phosphor hochgiftig ist, kam es jedoch oft zu schweren Vergiftungen bei Arbeitern, die mit ihm in Berührung kamen. -- Weißer Phosphor spielte in der Militärgeschichte als Waffe eine Rolle. Er wurde als Füllmaterial von Brandbomben, den sogenannten Phosphorbomben, verwendet. So setzte die britische Luftwaffe im Zweiten Weltkrieg ein Gemisch aus weißem Phosphor und Kautschuk ein.

16 Schwefel

Bearbeiten

16. Schwefel (lat. Sulphur [ˈzʊlfʊr] oder Sulfur, im Deutschen eventuell von indogerm. *suel- oder „schwelen“ abgeleitet; die Silbe „-thio-“ stammt vom griech. θείον (Schwefel)) ist ein chemisches Element mit dem Elementsymbol S und der Ordnungszahl 16. Im Periodensystem steht es in der sechsten Hauptgruppe und zählt zu den Chalkogenen. Schwefel steht an der 16. Stelle in der Häufigkeit der in der Lithosphäre vorkommenden Elemente. Es ist ein gelber, nichtmetallischer Feststoff, der eine Vielzahl allotroper Modifikationen bildet. Schwefel kommt in der Natur sowohl gediegen als auch in Form seiner anorganischen Verbindungen vor, letzteres vor allem als Sulfid oder Sulfat. -- Schwefel kommt in Organismen unter anderem in Aminosäuren und Coenzymen vor und spielt eine wichtige Rolle bei der anaeroben Energiegewinnung von Mikroorganismen. Der größte Teil des elementar gewonnenen Schwefels wird zur Herstellung von Schwefelsäure verbraucht, einer wichtigen anorganischen Grundchemikalie. Als Komponente des sauren Regens haben seine Oxide erhebliche Umweltrelevanz. - Schwefel ist ein lange bekanntes und vom Menschen genutztes Element. Seit etwa 5000 vor Christus wurde Schwefel in China und Ägypten zum Bleichen von Textilien, als Arzneimittel und zur Desinfektion verwendet. So wird im Papyrus Ebers die Verwendung von Schwefel zur Behandlung von bakteriellen Entzündung des Auges (Trachom) erwähnt. Die Bibel erwähnt im 1. Buch Mose die Zerstörung der Städte Sodom und Gomorra durch Feuer und Schwefel, wahrscheinlich in Assoziation mit vulkanischer Aktivität. Eine natürlich vorkommende Modifikation des Schwefels, in China als Shiliuhuang bekannt, war in China seit dem sechsten Jahrhundert vor Christus bekannt. Etwa im dritten vorchristlichen Jahrhundert wurde in China die Gewinnung des Schwefels aus Pyrit entdeckt. -- Im November 1772 erkannte Lavoisier, dass Schwefel ein Element ist. Seine Versuche und Beobachtungen zum Verbrennungsverhalten von Schwefel führten letztendlich zum Fall der Phlogistontheorie.

17 Chlor

Bearbeiten

17. Chlor ist ein chemisches Element mit dem Symbol Cl und der Ordnungszahl 17. Im Periodensystem der Elemente steht es in der 7. Hauptgruppe und gehört damit zusammen mit Fluor, Brom, Iod und Astat zu den Halogenen. Elementares Chlor liegt unter Normalbedingungen in Form des zweiatomigen Moleküls Cl2 gasförmig vor. Es ist eines der reaktivsten Elemente und reagiert mit fast allen anderen Elementen und vielen Verbindungen. Die hohe Reaktivität bedingt auch die Giftigkeit des elementaren Chlors. Der Name des Elementes leitet sich vom griech. χλωρος chlōrós „hellgrün, frisch“ ab. Dieser Name wurde nach der typischen gelbgrünen Farbe des Chlorgases gewählt. (siehe auch: Chlorophyll) -- In der Natur kommt Chlor nicht elementar, sondern nur gebunden in verschiedenen Verbindungen vor. Die wichtigsten Verbindungen sind die Chloride, in denen Chlor in Form des Anions Cl− auftritt. Das bekannteste Chlorid ist Natriumchlorid, häufig auch als Kochsalz oder kurz Salz bezeichnet. Chlorid ist ein häufiger Bestandteil des Meerwassers und besitzt wichtige biologische Funktionen, vor allem bei der Steuerung des Wasserhaushaltes im Körper. -- Das fast ausschließlich durch Elektrolyse gewonnene Chlor wird großteils für die Synthese chlorhaltiger Verbindungen wie des Vinylchlorids, einem Ausgangsprodukt für die Produktion des Kunststoffes PVC, eingesetzt. -- Elementares Chlor wurde erstmals 1774 von Carl Wilhelm Scheele dargestellt. Er ließ dabei Salzsäure mit Braunstein reagieren. Dabei erkannte er jedoch nicht, dass es sich bei dem dabei entstehenden Produkt um ein bisher unentdecktes Element handelt. Stattdessen wurde von den meisten Chemikern wie Antoine Laurent de Lavoisier angenommen, dass der Stoff mit Sauerstoff angereicherte Muriumsäure sei. Der Grund für diese Annahme lag darin, dass die Salzsäure für eine sauerstoffhaltige Säure eines hypothetischen Elementes, des Muriums, gehalten wurde. Durch den Kontakt mit dem Mangandioxid sollte diese dann weiteren Sauerstoff aufnehmen. --

18 Argon

Bearbeiten

18. Argon ist ein chemisches Element mit dem Symbol Ar (bis 1957 nur A[2]) und der Ordnungszahl 18. Im Periodensystem steht es in der 8. Hauptgruppe (Gruppe 18) und zählt daher zu den Edelgasen. Wie die anderen Edelgase ist es ein farbloses, äußerst reaktionsträges, einatomiges Gas. In vielen Eigenschaften wie Schmelz- und Siedepunkt oder Dichte steht es zwischen dem leichteren Neon und dem schwereren Krypton. --- Argon ist das häufigste auf der Erde vorkommende Edelgas, der Anteil an der Atmosphäre beträgt etwa 0,934 %. Damit ist Argon der dritthäufigste Bestandteil der Luft, nach Stickstoff und Sauerstoff. Dies ist großteils auf den Zerfall des Kaliumisotops 40K zurückzuführen, bei dem 40Ar entsteht. -- Argon war das erste Edelgas, das – nach der Entdeckung des Heliums im Sonnenspektrum – auf der Erde entdeckt wurde. Es wurde 1894 von Lord Rayleigh und William Ramsay durch fraktionierte Destillation von flüssiger Luft gefunden. Als preiswertestes Edelgas wird Argon in großen Mengen als Schutzgas etwa beim Schweißen und in der Produktion von manchen Metallen, aber auch als Füllgas von Glühlampen verwendet. -- Einen ersten Hinweis auf das später entdeckte Argon fand Henry Cavendish, der 1783 die Reaktivität der Luft erforschte. Er erzeugte elektrische Entladungen in einer bestimmten Menge Luft, die mit Sauerstoff im Verhältnis von 5:3 angereichert war. Stickstoff und Sauerstoff reagierten miteinander und die entstandenen Stickoxide konnten ausgewaschen werden. Dabei blieb stets ein kleiner Rest nicht-reagierten Gases zurück. Cavendish erkannte jedoch nicht, dass es sich dabei um ein anderes Element handelte und setzte seine Experimente nicht fort. -- Nachdem Lord Rayleigh 1892 die Dichte von aus Luft isoliertem Stickstoff bestimmt hatte, fiel ihm auf, dass aus Ammoniak gewonnener Stickstoff eine niedrigere Dichte aufwies. Es gab verschiedene Spekulationen zu diesem Befund, so meinte James Dewar, es müsse sich um ein N3, also ein Stickstoff-Analogon zu Ozon handeln. Rayleigh wiederholte Cavendishs Experimente, in dem er in einer luftgefüllten Glaskugel elektrische Funken erzeugte und so Stickstoff und Sauerstoff zur Reaktion brachte. Nach Bestätigung von Cavendishs Ergebnis eines unreaktiven Rückstandes, untersuchte William Ramsay diesen ab 1894 durch Überleitung über heißes Magnesium genauer. Da Magnesium mit Stickstoff zum Nitrid reagiert, konnte er dem Gemisch weiteren Stickstoff entziehen. Dabei stellte er eine Erhöhung der Dichte fest und fand schließlich ein bislang unbekanntes, reaktionsträges Gas. Am 31. Januar 1895 gaben Ramsay und Rayleigh schließlich die Entdeckung des neuen Elements bekannt, das sie nach dem altgriechisch. ἀργόν, argos, „träge“ Argon nannten. -- Als William Ramsay ab 1898 das aus der Luft isolierte Argon weiter untersuchte, entdeckte er darin drei weitere Elemente, die Edelgase Neon, Krypton und Xenon.

19 Kalium

Bearbeiten

19. Kalium, (von Kali aus arab. ‏‏ al-qalya, ‚Pflanzenasche‘) ist ein chemisches Element mit dem Elementsymbol K und der Ordnungszahl 19. Im Periodensystem steht es in der ersten Hauptgruppe und zählt zu den Alkalimetallen. -- Am 19. November 1807 berichtete Humphry Davy vor der Royal Society in London, es sei ihm gelungen, durch Elektrolyse von schwach angefeuchteten Ätzalkalien zwei verschiedene Metalle zu gewinnen; das eine, am 6. Oktober 1807 erstmals gewonnene, Metall nannte er Potassium (= englische und französische Bezeichnung für Kalium), weil man es aus Pottasche gewinnen kann, das andere, wenige Tage später erstmals gewonnene, Sodium (die noch heute geltende französische und englische Bezeichnung für Natrium), weil es in den verschiedenen Modifikationen von Natriumcarbonat (Soda) enthalten ist. Im deutschen Sprachraum wird das Sodium Davys seit 1811 nach einem Vorschlag von Berzelius als Natrium bezeichnet, während man für das Potassium Davys den von Klaproth 1796 eingeführten Ausdruck Kalium (von arab. al-qalya = Asche, aus Pflanzenasche gewinnbar) übernahm.

20 Calcium

Bearbeiten

20. Calcium (fachsprachlich) oder Kalzium ist ein chemisches Element mit dem Elementsymbol Ca und der Ordnungszahl 20. Im Periodensystem steht es in der zweiten Hauptgruppe und zählt daher zu den Erdalkalimetallen. -- Elementares Calcium ist ein glänzendes, silberweißes Metall. In der Umwelt kommt Calcium nur in gebundener Form als Bestandteil von Mineralien vor. Zu diesen Mineralien gehören z. B. Kalkstein (auch als Calcit, Kalkspat oder Marmor), Kreide und Gips. Außerdem ist Calcium ein wesentlicher Bestandteil der Knochen. -- Der Name „Calcium“ leitet sich vom lateinischen calx ab. So bezeichneten die Römer Kalkstein, Kreide und daraus hergestellten Mörtel. Elementares Calcium gewann erstmals Humphry Davy 1808 durch Abdampfen des Quecksilbers aus elektrolytisch gewonnenem Calciumamalgam. --- Calcium ist das fünfthäufigste Element der Erdkruste. Aufgrund seiner chemischen Reaktivität kommt es nur chemisch gebunden natürlich vor. Eine Ausnahme stellt vermutlich eine Fluorit-Varietät ("Stinkspat") dar

21 Scandium

Bearbeiten

21. Scandium (von lat. Scandia „Skandinavien“) ist ein chemisches Element mit dem Symbol Sc und der Ordnungszahl 21. Im Periodensystem steht es in der 3. Nebengruppe (Gruppe 3) oder Scandiumgruppe. Das weiche, silberweiße Element ist das erste der Übergangsmetalle und wird auch den Metallen der Seltenen Erden zugerechnet. -- Scandium wurde 1879 von Lars Fredrik Nilson entdeckt.Das von ihm vermutete neue Element nannte er zu Ehren seiner Heimat „Scandium“. Schon 1869 sagte Dmitri Iwanowitsch Mendelejew ein Element Eka-Bor mit der Ordnungszahl 21 voraus. Erst Per Teodor Cleve erkannte später die Übereinstimmung des Scandiums mit dem Eka-Bor. -- Reines Scandium wurde erstmals 1937 elektrolytisch aus einer eutektischen Schmelze aus Kalium-, Lithium- und Scandiumchlorid bei 700 bis 800 °C hergestellt. -- Scandium gehört zu den seltenen Elementen. Elementar kommt es nicht vor, nur in einigen seltenen Mineralien findet man es in angereicherter Form. -- Aufgrund seiner Dichte zählt Scandium zu den Leichtmetallen. An Luft wird es matt, es bildet sich eine schützende gelbliche Oxidschicht.

22 Titan

Bearbeiten

22. Titan ist ein chemisches Element mit dem Elementsymbol Ti und der Ordnungszahl 22. Es gehört zu den Übergangsmetallen und steht im Periodensystem in der 4. Nebengruppe (Gruppe 4) oder Titangruppe. Das Metall ist weiß-metallisch glänzend, leicht, fest, dehnbar, korrosions- und temperaturbeständig. Es ist daher besonders für Anwendungen geeignet, bei denen es auf hohe Korrosionsbeständigkeit, Festigkeit und geringes Gewicht ankommt. Aufgrund des komplizierten Herstellungsprozesses ist Titan zehnmal so teuer wie herkömmlicher Stahl. -- Titan wurde 1791 in England von dem Geistlichen und Amateurchemiker William Gregor im Titaneisen entdeckt. Ilmenit, auch Titaneisen oder Titaneisenerz genannt, ist ein häufig vorkommendes Mineral aus der Mineralklasse der Oxide mit dem Stoffmengenverhältnis Metall:Sauerstoff=2:3. 1795 entdeckte es der deutsche Chemiker Heinrich Klaproth im Rutilerz ebenfalls und gab dem Element – angelehnt an das griechische Göttergeschlecht der Titanen – seinen heutigen Namen. Es gelang jedoch erst im Jahre 1831 Justus von Liebig, aus dem Erz das metallische Titan zu gewinnen.

23 Vanadium

Bearbeiten

23. Vanadium, veraltet auch Vanadin, ist ein chemisches Element mit dem Symbol V und der Ordnungszahl 23. Es ist ein stahlgraues, bläulich schimmerndes, in reinem Zustand sehr weiches Übergangsmetall. Im Periodensystem bildet das Metall zusammen mit den schwereren Niob, Tantal und Dubnium die 5. Gruppe oder Vanadiumgruppe. Der Großteil des Vanadiums wird als sogenanntes Ferrovanadium in der Stahlherstellung eingesetzt. Der Zusatz von Vanadium in Chrom-Vanadium-Stählen führt zu einer Erhöhung der Zähigkeit und damit zu einer erhöhten Widerstandsfähigkeit des Stahls. -- Zum ersten Mal wurde das spätere Vanadium 1801 vom spanischen Mineralogen Andrés Manuel del Río in einem mexikanischen Bleierz, dem späteren Vanadinit, entdeckt. Er nannte das neue Element zunächst wegen der Vielfarbigkeit der Verbindungen Panchromium, später Erythronium, da sich die Salze beim Ansäuern rot färbten. Die Entdeckung widerrief del Rio jedoch kurze Zeit später, als zunächst Alexander von Humboldt und später der französische Chemiker H.V. Collett-Desotils auf Grund der Ähnlichkeit zu Chromverbindungen behaupteten, bei dem neuen Element würde es sich um verunreinigtes Chrom handeln. -- Die Wiederentdeckung des Elementes gelang 1830 dem schwedischen Chemiker Nils Gabriel Sefström. Er untersuchte Eisen aus der schwedischen Eisenerzgrube Taberg, indem er dieses in Salzsäure löste. Dabei entdeckte er neben anderen bekannten Stoffen ein unbekanntes Element, das in manchen Eigenschaften dem Chrom, in anderen dem Uran ähnelte, aber nach weiteren Untersuchungen keines dieser Elemente war. Das neue Element benannte er nach Vanadis, einem Beinamen der nordischen Gottheit Freyja. Kurze Zeit später wies Friedrich Wöhler nach, dass es sich bei Vanadium und Erythronium um identische Elemente handelt.

24 Chrom

Bearbeiten

24. Chrom (altgr. chroma ,Farbe‘) ist ein chemisches Element mit dem Elementsymbol Cr und der Ordnungszahl 24. Es zählt zu den Übergangsmetallen, im Periodensystem steht es in der 6. Nebengruppe (Gruppe 6) oder Chromgruppe. Die Verbindungen von Chrom haben viele verschiedene Farben und werden oft als Pigmente in Farben und Lacken verwendet. -- 1761 entdeckte Johann Gottlob Lehmann ein orangerotes Bleichromat-Mineral (PbCrO4) im Ural, das er Rotbleierz nannte. Da er es als eine Blei-Eisen-Selen-Verbindung identifizierte, blieb Chrom noch unentdeckt. -- 1770 fand Peter Simon Pallas an gleicher Stelle ein rotes Bleimineral, das wegen seiner Rotfärbung Krokoit (von griech. krokos „safranfarben“) genannt wurde. Die Verwendung von Rotbleierz als Farbpigment nahm schnell zu. Ein aus Krokoit gewonnenes strahlendes Gelb, das Chromgelb, wurde als Postgelb zur Modefarbe. -- 1797 gewann Louis-Nicolas Vauquelin Chrom(III)-oxid Cr2O3 aus Krokoit und Salzsäure. 1798 erhielt er verunreinigtes elementares Chrom durch Reduktion von Chrom(III)-oxid mit Holzkohle. Dieses neu isolierte Element erhielt den Namen Chrom (von griech. chroma „Farbe“), aufgrund der Vielfarbigkeit seiner Salze in unterschiedlichen Oxidationsstufen. Spuren des neuen Elementes konnte Vauquelin auch in Edelsteinen wie Rubin und Smaragd nachweisen. -- Im 19. Jahrhundert wurden Chromverbindungen überwiegend als Farbpigmente und in der Chromgerberei verwandt. Ende des 20. Jahrhunderts werden Chrom und Chromverbindungen hauptsächlich zur Herstellung von korrosions- und hitzebeständigen Legierungen eingesetzt (Verchromen, Chromstahl).

25 Mangan

Bearbeiten

25. Mangan [maŋˈɡaːn] (altgr. μαυγάυμι ,ich entfärbe wirklich‘) ist ein chemisches Element mit dem Elementsymbol Mn und der Ordnungszahl 25. Im Periodensystem steht es in der 7. Nebengruppe (Gruppe 7), der Mangangruppe. Mangan ist ein silberweißes, hartes, sehr sprödes Übergangsmetall, das in manchen Eigenschaften dem Eisen ähnelt. -- Mangan kommt in der Natur vorwiegend als Braunstein vor und wird in großen Mengen abgebaut. 90 % des abgebauten Mangans werden in der Stahlindustrie in Form von Ferromangan als Legierungsbestandteil von Stahl eingesetzt. Dabei entzieht es dem Stahl Sauerstoff und Schwefel und wirkt gleichzeitig härtend. Wirtschaftlich wichtig ist zudem Mangan(IV)-oxid, das als Kathode in Alkali-Mangan-Batterien eingesetzt wird. -- In der Natur vorkommende Manganoxide wie Braunstein sind schon lange als natürliche Pigmente bekannt und in Gebrauch. So wurden schwarze Manganoxid-Pigmente unter anderem in den etwa 17.000 Jahre alten Höhlenmalereien in den Höhlen von Ekain und Lascaux nachgewiesen. In der Glasherstellung werden Manganverbindungen seit dem vierten Jahrhundert vor Christus im Römischen Reich eingesetzt. Dabei hat das Mangan zwei verschiedene Funktionen. Wird Braunstein eingesetzt, färbt dieses das Glas intensiv braun-violett. Wird dagegen dreiwertiges Manganoxid in eisenhaltige Gläser gegeben, entfärbt es diese, indem es das blaufärbende zweiwertige Eisen zum schwach gelben dreiwertigen oxidiert. -- Die erste Gewinnung des Elements gelang wahrscheinlich 1770 Ignatius Gottfried Kaim, der Braunstein mit Kohlenstoff reduzierte und dabei unreines Mangan erhielt, das er Braunsteinkönig nannte. Diese Entdeckung ist jedoch nicht sehr bekannt geworden. 1774 erkannte Carl Wilhelm Scheele, dass Braunstein ein unbekanntes Element enthalten müsse, im gleichen Jahr stellte Johan Gottlieb Gahn auf Scheeles Anregung hin Mangan durch Reduktion von Braunstein mit Kohlenstoff her. -- Als Name wurde nach der lateinischen Bezeichnung für Braunstein manganesia nigra zunächst Manganesium gewählt, nach der Entdeckung des Magnesiums jedoch wegen möglicher Verwechselungen zu Mangan(ium) abgekürzt. -- 1839 wurde erkannt, dass Mangan die Formbarkeit von Eisen verbessert. Als 1856 Robert Mushet zeigte, dass durch Zusatz von Mangan eine Massenproduktion von Stahl im Bessemer-Verfahren möglich ist, wurde Mangan in kurzer Zeit in großen Mengen zur Stahlproduktion verwendet.

26 Eisen

Bearbeiten

26. Eisen (mhd. isen; vergleichbar mit kelt. isara „kräftig“, got. eisarn und aiz, lat. aes „Erz“)[A 1] ist ein chemisches Element mit dem Elementsymbol Fe (lat. ferrum, Eisen) und der Ordnungszahl 26. Es zählt zu den Übergangsmetallen, im Periodensystem steht es in der 8. Nebengruppe (Eisen-Platin-Gruppe), nach der neuen Zählung in der Gruppe 8 oder Eisengruppe. Im Kontext der industriellen Fertigung versteht man unter Eisen den Werkstoff Gusseisen, wohingegen der Werkstoff Stahl gewöhnlich nicht als Eisen bezeichnet wird. -- Die erste nachweisbare Nutzung von Eisen findet sich etwa um 4000 v. Chr. in Sumer und Ägypten. Es handelte sich um gediegenes Eisen von Meteoriten, das zur Dekoration und zur Anfertigung von Speerspitzen diente. -- Aus dem Zeitraum zwischen 3000 und 2000 v. Chr. findet man verhüttetes Eisen (vom Meteoriteisen durch die Abwesenheit von Nickel unterscheidbar) in Mesopotamien, Anatolien und Ägypten. Es scheint nur zeremoniell genutzt worden zu sein und war wertvoller als Gold. Möglicherweise entstand es in Form von Eisenschwamm als Nebenprodukt der Bronzeherstellung. -- Zwischen 1600 und 1200 v. Chr. wurde Eisen verstärkt genutzt; die Hethiter kannten wohl eine Methode zur wirtschaftlichen Herstellung von Eisen. Es löste Bronze allerdings noch nicht ab. In dieser Zeit blieb die Eisenproduktion weitgehend ein Monopol des Hethitischen Reiches (auf dem Gebiet der heutigen Türkei) und war ein Faktor dessen Aufstiegs. Ab 1200 v. Chr. fand mit dem Untergang des Hethitischen Reiches und der Verbreitung des entsprechenden Wissens im Nahen Osten der Übergang von der Bronzezeit zur Eisenzeit statt. -- Beim ersten eisenzeitlichen Verhüttungsschritt entstand Eisenschwamm. Durch den Gebrauch von Holzkohle bei der Weiterverarbeitung wurde dem Eisen Kohlenstoff zugeführt, mit dem Endresultat eines (zumindest oberflächlichen) Stahls. Durch vorsichtiges Härten, das heißt sorgfältiges und gekonntes Abkühlen (im Allgemeinen in einer Flüssigkeit wie Wasser oder Öl), entstanden Werkstücke mit einer bis dahin nicht gekannten Elastizität und Härte, die der Bronze weit überlegen waren. -- Da europäische Verarbeitungstechniken (Rennofen) nur Temperaturen von knapp 1.300 °C erreichten, fand die Entwicklung von Gusseisen erst im 15. Jahrhundert in Schweden (Lapphyttan und Vinarhyttan) statt. Mit der gegossenen Kanonenkugel verbreitete sich die Gusseisenverarbeitung schnell wie die Feldzüge über ganz Europa.

27 Cobalt

Bearbeiten

27. Cobalt (chemische Fachsprache; standardsprachlich Kobalt; von lat. cobaltum „Kobold“ - Kobold ist ein Begriff für Haus- und Naturgeister.) ist ein chemisches Element mit dem Elementsymbol Co und der Ordnungszahl 27. Cobalt ist ein ferromagnetisches Übergangsmetall aus der 9. Gruppe oder Cobaltgruppe des Periodensystems. In der älteren Zählweise zählt es zur 8. Nebengruppe oder Eisen-Platin-Gruppe. 1735 entdeckte der schwedische Chemiker Georg Brandt das bis dahin unbekannte Element und gab ihm den heutigen Namen. -- Eine Besonderheit stellt die molare Masse von Cobalt dar, sie ist mit 58,93 größer als die von Nickel mit 58,69, dem nächsten Element im Periodensystem. Diese Besonderheit gibt es auch zwischen Argon (39,95) und Kalium (39,10) sowie zwischen Tellur (127,60) und Iod (126,90). -- Cobalterze und Cobaltverbindungen sind schon seit sehr langer Zeit bekannt und wurden vorwiegend zum Färben von Glas und Keramik verwendet (Cobaltblau). Im Mittelalter wurden sie häufig für wertvolle Silber- und Kupfererze gehalten. Da sie sich aber nicht verarbeiten ließen und wegen des Arsengehalts beim Erhitzen schlechte Gerüche abgaben, wurden sie als verhext angesehen. Angeblich hätten Kobolde das kostbare Silber aufgefressen und an seiner Stelle wertlosere silberfarbene Erze ausgeschieden. Neben Cobalt waren dies auch Wolfram- und Nickelerze. Diese Erze wurden von den Bergleuten dann mit Spottnamen wie Nickel, Wolfram (etwa „Wolfsspucke“, lat. lupi spuma) und eben Kobolderz, also Cobalt belegt. -- Erstmals dargestellt wurde Cobalt 1735 vom schwedischen Chemiker Georg Brandt.

28 Nickel

Bearbeiten

28. Nickel ist ein chemisches Element mit dem Elementsymbol Ni und der Ordnungszahl 28. Es zählt zu den Übergangsmetallen, im Periodensystem steht es nach der älteren Zählweise in der 8. Nebengruppe oder Eisen-Platin-Gruppe, nach der neueren in der Gruppe 10 oder Nickelgruppe. -- Nickel wurde bereits 3400 v. Chr. benutzt, aber wohl nicht absichtlich und gezielt. Bronze aus dem Gebiet des heutigen Syriens enthielt bis zu zwei Prozent Nickel, das wohl schon im Kupfer- oder Zinnerz enthalten war. Chinesische Schriften bezeugen, dass in Asien „weißes Kupfer“ (Neusilber) zwischen 1700 und 1400 v. Chr. verwendet wurde. Es war lange bekannt, dass antike Münzen Kupfernickel enthalten. -- Nickel wurde jedoch erstmals 1751 von Axel Frederic Cronstedt rein dargestellt. Er nannte das Metall 1754 Nickel, abgeleitet von Kupfernickel (schwedisch kopparnickel), dem aus dem Erzgebirge stammenden Wort für Rotnickelkies. So nannten Bergleute das Erz, das aussah wie Kupfererz, aus dem sich aber kein Kupfer gewinnen ließ, als sei es von Berggeistern („Nickeln“) verhext. Eine ähnlich koboldhafte Etymologie findet sich bei Cobalt. -- Die erste Münze aus reinem Nickel wurde 1881 geprägt. -- Nickel ist mit der Nickeldermatitis der häufigste Auslöser für Kontaktallergien: in Deutschland sind schätzungsweise 1,9 bis 4,5 Millionen Menschen gegen Nickel sensibilisiert. Deswegen werden Metalle und Legierungen, die mit der Haut in Kontakt kommen, zunehmend seltener vernickelt.

29 Kupfer

Bearbeiten

29. Kupfer (lat. Cuprum) ist ein chemisches Element mit dem Elementsymbol Cu und der Ordnungszahl 29. Es ist ein Übergangsmetall, im Periodensystem steht es in der 4. Periode und der 1. Nebengruppe (nach neuer Zählung Gruppe 11) oder Kupfergruppe. Der lateinische Name cuprum ist abgeleitet von aes cyprium „Erz von der Insel Zypern“, auf der im Altertum Kupfer gewonnen wurde. -- Kupfer ist als relativ weiches Metall gut formbar und zäh. Als hervorragender Wärme- und Stromleiter findet es vielseitige Verwendung. Darüber hinaus zählt es auch zur Gruppe der Münzmetalle. -- Als schwach reaktives Schwermetall gehört Kupfer zu den Edelmetallen. -- Metalle, welche die Menschheit in ihrer Entwicklung kennenlernte. Da Kupfer leicht zu verarbeiten ist, wurde es bereits von den ältesten bekannten Kulturen vor etwa 10.000 Jahren verwendet. Die Zeit seines weiträumigen Gebrauchs vom 5. Jahrtausend v. Chr. bis zum 3. Jahrtausend v. Chr. wird manchmal auch Kupferzeit genannt. In der Alchemie wurde Kupfer mit Venus/Weiblichkeit ♀ (Planetenmetalle) assoziiert. Die ersten Spiegel wurden aus diesem Metall hergestellt. -- Später wurde es mit Zinn und Bleianteilen zu Bronze legiert. Diese härtere und technisch widerstandsfähigere Legierung wurde zum Namensgeber der Bronzezeit. Die Unterscheidung von Blei und Zinn wurde erst mit wachsenden Metallkenntnissen eingeführt, sodass der Begriff Bronze aus heutiger Sicht nur auf die hochkupferhaltigen Zinn-Kupferlegierungen richtig angewendet ist. -- Die goldgelbe Kupfer-Zink-Legierung „Messing“ war bereits im antiken Griechenland bekannt. Es wurde durch gemeinsames Verarbeiten der jeweiligen Erze erschmolzen, aber erst die Römer haben dieses Verfahren verstärkt verwendet. In Altkolumbien wurde die Gold-Kupfer-Legierung Tumbaga häufig verwendet.

30. Zink ist ein chemisches Element mit dem Elementsymbol Zn und der Ordnungszahl 30. Zink wird zu den Übergangsmetallen gezählt, nimmt aber darin eine Sonderstellung ein, da es wegen der abgeschlossenen d-Schale in seinen Eigenschaften eher den Erdalkalimetallen ähnelt. Nach der veralteten Zählung wird die Zinkgruppe als 2. Nebengruppe bezeichnet (analog zu den Erdalkalimetallen als 2. Hauptgruppe), nach der aktuellen IUPAC-Nomenklatur bildet Zink mit Cadmium und Quecksilber die Gruppe 12. Es ist ein bläulich-weißes sprödes Metall und wird unter anderem zum Verzinken von Eisen und Stahlteilen sowie für Regenrinnen verwendet. Zink ist für alle Lebewesen essentiell und ist Bestandteil wichtiger Enzyme. Der Name Zink kommt von Zinke, Zind „Zahn, Zacke“, da Zink zackenförmig erstarrt. -- Bereits im Altertum war Zink als Legierungsbestandteil von Messing in Gebrauch. Als eigenständiges Metall wurde es jedoch erst im 17. Jahrhundert in Indien entdeckt und verarbeitet.

31 Gallium

Bearbeiten

31. Gallium ist ein selten vorkommendes chemisches Element mit dem Elementsymbol Ga und der Ordnungszahl 31. Im Periodensystem steht es in der 4. Periode und ist das dritte Element der 3. Hauptgruppe (Gruppe 13) oder Borgruppe. Es ist ein silberweißes, leicht zu verflüssigendes Metall. Gallium kristallisiert nicht in einer der sonst häufig bei Metallen anzutreffenden Kristallstrukturen, sondern in seiner stabilsten Modifikation in einer orthorhombischen Struktur mit Gallium-Dimeren. Daneben sind noch sechs weitere Modifikationen bekannt, die sich bei speziellen Kristallisationsbedingungen oder unter hohem Druck bilden. In seinen chemischen Eigenschaften ähnelt das Metall stark dem Aluminium. -- In der Natur kommt Gallium nur in geringem Umfang und meist als Beimischung in Aluminium-, Zink- oder Germaniumerzen vor; Galliumminerale sind sehr selten. Dementsprechend wird es auch als Nebenprodukt bei der Produktion von Aluminium oder Zink gewonnen. Der größte Teil des Galliums wird zum Halbleiter Galliumarsenid weiterverarbeitet, der vor allem für Leuchtdioden verwendet wird. -- Erstmals wurde ein dem späteren Gallium entsprechendes Element 1871 von Dmitri Mendelejew vorausgesagt. Er prognostizierte mit Hilfe des von ihm entwickelten Periodensystems ein neues, Eka-Aluminium genanntes Element und sagte auch einige Eigenschaften dieses Elementes (Atommasse, spezifisches Gewicht, Schmelzpunktlage und Art der Salze) voraus. -- Der französische Chemiker Paul Émile Lecoq de Boisbaudran, der Mendelejews Voraussagen nicht kannte, hatte herausgefunden, dass in der Linien-Abfolge im Linienspektrum von Elementfamilien bestimmte Gesetze herrschen, und versuchte diese für die Aluminiumfamilie zu bestätigen. Dabei erkannte er, dass zwischen Aluminium und Indium ein weiteres, noch unbekanntes Element stehen müsste. 1875 gelang es ihm schließlich, im Emissionsspektrum von Zinkblende-Erz, das er in Säure gelöst und mit metallischem Zink versetzt hatte, zwei violette Spektrallinien nachzuweisen, die er dem unbekannten Element zuordnete. -- Für die Namensgebung gibt es zwei Theorien. Nach der ersten benannte Boisbaudran das Element nach Gallien, der lateinischen Bezeichnung seines Heimatlandes Frankreich. Die zweite gibt das ebenfalls lateinische Wort gallus (Hahn) als Quelle des Namens an, das im Französischen Le Coq heißt. Paul Émile Lecoq de Boisbaudran hätte das neue Element demnach nach seinem eigenen Namen benannt.

32 Germanium

Bearbeiten

32. Germanium (von lateinisch Germania ‚Deutschland‘, dem Heimatland des Entdeckers Clemens Winkler (1838–1904)) ist ein chemisches Element mit dem Elementsymbol Ge und der Ordnungszahl 32. Im Periodensystem steht es in der 4. Periode sowie der 4. Hauptgruppe (Gruppe 14) oder Kohlenstoffgruppe. Es wurde am 6. Februar 1886 erstmals nachgewiesen. -- Als 1871 Dmitri Mendelejew das Periodensystem entwarf, stieß er auf eine Lücke unterhalb des Siliziums und postulierte ein bis dahin unbekanntes Element, das er als Eka-Silicium bezeichnete. Mendelejew machte Vorhersagen über die Eigenschaften des Eka-Siliciums und dessen Verbindungen, die von der Wissenschaft jedoch abgelehnt wurden. 1886 entdeckte Clemens Winkler, ein Chemiker an der Bergakademie Freiberg (in Freiberg), der mit Cobalt-Glas arbeitete, das Germanium. Es handelte sich hierbei um das von Mendelejew vorhergesagte Element Eka-Silicium, dessen Eigenschaften dem gefundenem Germanium sehr nahe kamen. Mendelejew hatte die Eigenschaften aus seinem Periodensystem abgeleitet, so dass dieser Fund zur Anerkennung des Periodensystems beitrug. -- Die Herkunft und Etymologie des Namens Germanium könnte auch aus einem semantischen Missverständnis in Zusammenhang mit seinem Vorgängerelement Gallium herrühren, denn für die Namensgebung von Gallium gibt es zwei Theorien. Nach der ersten benannte der französische Chemiker Paul Émile Lecoq de Boisbaudran das Element nach Gallien, der lateinischen Bezeichnung seines Heimatlandes Frankreich. Die zweite gibt das ebenfalls lateinische Wort gallus (Hahn) als Quelle des Namens an, das im Französischen Le Coq heißt. Paul Émile Lecoq de Boisbaudran hätte das neue Element demnach nach seinem eigenen Namen benannt. Winkler nahm an, dass das vorherige Element Gallium nach der Staatsangehörigkeit des französischen Entdeckers benannt wurde. So nannte er das neue chemische Element „Germanium“ zu Ehren seines Landes (lat. Germania für Deutschland).

33 Arsen

Bearbeiten

33. Arsen [arˈzeːn] ist ein chemisches Element mit dem Elementsymbol As und der Ordnungszahl 33. Im Periodensystem der Elemente steht es in der 4. Periode sowie der 5. Hauptgruppe (Gruppe 15) oder Stickstoffgruppe. Arsen kommt selten gediegen, meistens in Form von Sulfiden vor. Es gehört zu den Halbmetallen, da es je nach Modifikation metallische oder nichtmetallische Eigenschaften zeigt. -- Arsenverbindungen kennt man schon seit dem Altertum. Obwohl sie hochgradig giftig sind, finden sie Verwendung als Bestandteil einzelner Arzneimittel. Arsen wird auch zur Dotierung von Halbleitern und als Bestandteil von III-V-Halbleitern wie Galliumarsenid genutzt. -- Der Name Arsen geht unmittelbar auf das griechische arsenikón (αρσενικόν) zurück, die Bezeichnung des Arsenminerals Auripigment. Sie findet sich schon bei Dioskurides im 1. Jahrhundert. Die griechische Bezeichnung scheint ihrerseits ihren Ursprung im Mittelpersischen al-zarnik (goldfarben) zu haben und gelangte wohl durch semitische Vermittlung ins Griechische. Volksetymologisch wurde der Name fälschlicherweise vom griechischen Wort arsenikós abgeleitet, das sich etwa mit männlich/stark übersetzen lässt. Erst seit dem 19. Jahrhundert ist die Bezeichnung Arsen gebräuchlich. Das Elementsymbol wurde 1814 von Jöns Jakob Berzelius vorgeschlagen.

34 Selen

Bearbeiten

34. Selen [zeˈleːn] ist ein chemisches Element mit dem Elementsymbol Se und der Ordnungszahl 34. Im Periodensystem steht es in der 4. Periode sowie der 6. Hauptgruppe, zählt also zu den Chalkogenen. Es kommt in mehreren Modifikationen vor, die stabilste ist die graue metallähnliche Form. -- Selen (griech. σελήνη Selen „Mond“) wurde 1817 von Jöns Jakob Berzelius im Bleikammerschlamm einer Schwefelsäurefabrik entdeckt, der neben Selen auch Tellur (von lat. tellus „Erde“) enthielt.

35. Brom [broːm] ist ein chemisches Element mit dem Elementsymbol Br und der Ordnungszahl 35. Im Periodensystem steht es in der 7. Hauptgruppe und gehört damit zusammen mit Fluor, Chlor, Iod und Astat zu den Halogenen. Der Name des Elements leitet sich vom griech. βρῶμος brômos „Gestank“ ab. Elementares Brom liegt unter Normbedingungen in Form des zweiatomigen Moleküls Br2 in flüssiger Form vor. Brom und Quecksilber sind die einzigen Elemente, die unter Normbedingungen flüssig sind. -- In der Natur kommt Brom nicht elementar, sondern nur gebunden in verschiedenen Verbindungen vor. Die wichtigsten Verbindungen sind die Bromide, in denen Brom in Form des Anions Br− auftritt. Die bekanntesten Bromide sind Natriumbromid und Kaliumbromid. Bromide sind ein Bestandteil des Meerwassers und besitzen einige biologische Funktionen. -- Brom wurde 1826 erstmals durch den französischen Chemiker Antoine-Jérôme Balard aus Meeresalgen der Salzwiesen bei Montpellier chemisch hergestellt. Eine industrielle Produktion erfolgte ab 1860. Aufgrund seines stechenden Geruchs schlug Joseph Louis Gay-Lussac den Namen „Brom“ (von griech. «Bocksgestank der Tiere» ) vor. -- Bereits zwei Jahre vor Balard stellte der deutsche Chemiker Justus von Liebig 1824 unbewusst elementares Brom her.

36 Krypton

Bearbeiten

36. Krypton ist ein chemisches Element mit dem Elementsymbol Kr und der Ordnungszahl 36. Im Periodensystem steht es in der 8. Hauptgruppe (Gruppe 18) und zählt daher zu den Edelgasen. Wie die anderen Edelgase ist es ein farbloses, äußerst reaktionsträges, einatomiges Gas. In vielen Eigenschaften wie Schmelz- und Siedepunkt oder Dichte steht es zwischen dem leichteren Argon und dem schwereren Xenon. -- Krypton zählt zu den seltensten Elementen auf der Erde und kommt nur in geringen Mengen in der Atmosphäre vor. -- Das Edelgas wurde 1896 von William Ramsay und Morris William Travers durch fraktionierte Destillation von flüssiger Luft entdeckt. Krypton wird auf Grund seiner Seltenheit nur in geringen Mengen, vor allem als Füllgas von Glühlampen, verwendet. Es ist eine geringe Anzahl an Kryptonverbindungen bekannt, von denen Kryptondifluorid, eines der stärksten Oxidationsmittel, die bekannteste ist. -- Nachdem 1894 Argon als erstes Edelgas von Lord Rayleigh und William Ramsay entdeckt und das bislang nur aus dem Sonnenspektrum bekannte Helium 1895 von Ramsay aus Uranerzen isoliert wurde, erkannte er aus den Gesetzen des Periodensystems, dass es noch weitere derartige Elemente geben müsste. Ramsay untersuchte daher ab 1896 zunächst verschiedene Minerale und Meteoriten und die von diesen beim Erhitzen oder Lösen abgegebene Gase. Er und sein Mitarbeiter Morris William Travers waren dabei jedoch nicht erfolgreich, es wurden Helium und seltener Argon gefunden. Auch die Untersuchung heißer Gase aus Cauterets in Frankreich und aus Island brachten keine Ergebnisse. -- Schließlich begannen sie, 15 Liter Rohargon zu untersuchen und durch Verflüssigung und fraktionierte Destillation zu trennen. Als sie den Rückstand, der bei fast völligem Verdampfen des Rohargons übrigblieb, untersuchten, fanden sie bislang unbekannte gelbe und grüne Spektrallinien, also ein neues Element. Es wurde nach dem altgriech. κρυπτός kryptós „verborgen“ Krypton genannt. Nach Reinigung durch weitere Destillation konnten Ramsay und Travers auch die molare Masse von etwa 80 g/mol bestimmen. Nach dieser Entdeckung konnten sie aus einer anderen, niedriger siedenden Fraktion ein weiteres Element, das Neon und schließlich durch Trennung des Rohkryptons das Xenon gewinnen.

37 Rubidium

Bearbeiten

37. Rubidium (lat. rubidus: tiefrot; wegen zweier charakteristischer roter Spektrallinien) ist ein chemisches Element mit dem Elementsymbol Rb und der Ordnungszahl 37. Im Periodensystem steht es in der 1. Hauptgruppe und zählt zu den Alkalimetallen. Das weiche, silbrigweiß glänzende Metall entzündet sich spontan bei Luftzutritt. -- Rubidium wurde 1861 von Robert Wilhelm Bunsen und Gustav Kirchhoff spektroskopisch als Verunreinigung im Lepidolith entdeckt. Bunsen gelang es, Rubidiumsalze aus Quellwasser zu fällen und diese von anderen Alkalimetallsalzen zu isolieren. Bunsen musste 44200 Liter Dürkheimer Quellwasser verarbeiten, um 9 g RbCl zu isolieren.

38 Strontium

Bearbeiten

38. Strontium ist ein chemisches Element mit dem Elementsymbol Sr und der Ordnungszahl 38. Im Periodensystem steht es in der 5. Periode sowie der 2. Hauptgruppe und gehört damit zu den Erdalkalimetallen. Es ist ein weiches (Mohshärte: 1,5) und sehr reaktionsfreudiges Metall. -- Das Element wurde 1790 von Adair Crawford entdeckt und nach seinem ersten Fundort Strontian in Schottland benannt. -- Strontian ist ein kleiner Ort am Loch Sunart (ein Meeresfjord) in den westlichen Highlands Schottlands. -- Das Wort Strontian entstammt der gälischen Sprache (Sròn an t-Sìtheinn) und bedeutet "Nase der Elfen".

39 Yttrium

Bearbeiten

39. Yttrium [ˈʏtriʊm] ist ein chemisches Element mit dem Elementsymbol Y und der Ordnungszahl 39. Es zählt zu den Übergangsmetallen sowie den Seltenerdmetallen, im Periodensystem steht es in der 5. Periode sowie der 3. Nebengruppe (Gruppe 3) oder Scandiumgruppe. Yttrium ist nach dem ersten Fundort, der Grube Ytterby bei Stockholm, benannt, wie auch Ytterbium, Terbium und Erbium. -- Yttrium (von Ytterby, Grube in der Nähe der schwedischen Hauptstadt Stockholm) wurde 1794 von Johan Gadolin im Mineral Ytterbit entdeckt. - Die Grube Ytterby liegt in der schwedischen Gemeinde Vaxholm auf der Insel Resarö in der Schärenlandschaft vor Stockholm. -- Die Grube Ytterby spielte eine wichtige Rolle bei der Geschichte der Entdeckung der Elemente der Seltenen Erden, da viele von ihnen erstmals hier gefunden wurden; so Gadolinium (benannt nach dem finnischen Chemiker Johan Gadolin), Holmium (vom lateinischen Name für Stockholm), Thulium (Thule ist ein altes Wort für Skandinavien) und natürlich Yttrium, Ytterbium, Terbium und Erbium, die alle nach Ytterby benannt wurden.

40 Zirconium

Bearbeiten

40. Zirconium, häufig auch Zirkonium, ist ein chemisches Element mit dem Elementsymbol Zr und der Ordnungszahl 40. Sein Name leitet sich vom Zirkon, dem häufigsten Zirconium-Mineral, ab. Im Periodensystem steht es in der 5. Periode; es ist das zweite Element der 4. Gruppe (veraltet 4. Nebengruppe) oder Titangruppe. Zirconium ist ein sehr korrosionsbeständiges Schwermetall. -- Zirkon ist ein Mineral aus der Mineralklasse der Silicate und der Gruppe der Inselsilicate. Die chemische Formel ist ZrSiO4. -- Das wichtige zirconiumhaltige Mineral Zirkon (Zr[SiO4]) ist als Schmuckstein bereits seit der Antike bekannt. Zirconium als Element wurde 1789 von Martin Heinrich Klaproth in einer aus Ceylon stammenden Probe des Minerals Zirkon entdeckt und nach diesem benannt.

41. Niob [ˈnioːp] (nach Niobe, der Tochter des Tantalos) ist ein chemisches Element mit dem Elementsymbol Nb und der Ordnungszahl 41. Es zählt zu den Übergangsmetallen, im Periodensystem steht es in der 5. Periode sowie der 5. Nebengruppe (Gruppe 5) oder Vanadiumgruppe. -- Im angelsächsischen Sprachraum wird auch heute noch von vielen Metallurgen, Werkstoffanbietern und im privaten Umgang die schon länger veraltete Bezeichnung Columbium und das Kurzzeichen Cb verwendet. -- Das selten vorkommende Schwermetall ist von grauer Farbe und gut schmiedbar. Niob kann aus den Mineralen Columbit, Coltan (Columbit-Tantalit) und Loparit gewonnen werden. Es wird hauptsächlich in der Metallurgie verwendet, um Spezialstähle herzustellen und die Schweißbarkeit zu verbessern. -- Niobe (griech.: Νιόβη) war die Tochter des Tantalos und der Dione oder der Euryanassa sowie die Schwester des Pelops. Auch sie unterlag dem Tantalidenfluch. -- Niobe gebar als Gemahlin des thebanischen Königs Amphion diesem sieben Söhne und sieben Töchter. Stolz auf ihre zahlreiche Nachkommenschaft vermaß sie sich, sich über die Titane Leto zu stellen, welche nur zwei Kinder, Apollon und Artemis, geboren hatte, und hinderte das Volk an deren Verehrung. -- Die gekränkte Titane wandte sich an ihre Kinder. Daraufhin streckten Apollon und Artemis an einem Tage erst alle Brüder und dann alle Töchter mit Pfeil und Bogen nieder. Die Eltern konnten diesen Jammer nicht überleben: Amphion tötete sich mit einem Schwert, und Niobe, die der ungeheure Schmerz erstarren ließ, bat zuvor noch, dass ihre jüngste Tochter verschont werde, doch wurde sie von den Göttern in Stein verwandelt und durch einen Wind nach Phrygien an den Berg Sipylos versetzt. Doch auch der Stein hörte nicht auf, Tränen zu vergießen.

42 Molybdän

Bearbeiten

42. Molybdän (griech. Μόλυβδος mólybdos „Blei“) ist ein chemisches Element mit dem Elementsymbol Mo und der Ordnungszahl 42. Es zählt zu den Übergangsmetallen, im Periodensystem steht es in der 5. Periode sowie der 6. Nebengruppe (Gruppe 6) oder Chromgruppe. -- Molybdän, das in Lagerstätten in der Regel als Molybdänglanz (Molybdändisulfid) vorkommt, wurde lange Zeit mit Bleiglanz oder auch Graphit verwechselt. 1778 gelang es Carl Wilhelm Scheele, aus Molybdänglanz durch Behandlung mit Salpetersäure das weiße Molybdän(VI)-oxid (auch Molybdäntrioxid) MoO3 (Wasserbleierde) herzustellen. 1782 reduzierte Peter Jacob Hjelm das Oxid mit Kohle zum elementaren Molybdän. Wegen seiner schwierigen Bearbeitbarkeit (reines Molybdän lässt sich plastisch verformen, jedoch schon die Verunreinigung mit einem zehntausendstel Prozent Sauerstoff oder Stickstoff lässt Molybdän stark verspröden) fand Molybdän lange Zeit keine Beachtung. Ende des 19. Jahrhunderts bemerkten Mitarbeiter der französischen Firma Schneider & Co. bei der Herstellung von Panzerrohren die nützlichen Eigenschaften von Molybdän-Legierungen. In den beiden Weltkriegen war die Nachfrage nach dem Metall groß, nach dem Zweiten Weltkrieg fielen die Preise dramatisch. Das einzige westeuropäische Bergwerk wurde bis 1973 in Knaben, Norwegen betrieben. -- The name is from Neo-Latin Molybdaenum, from Ancient Greek Μόλυβδος molybdos, meaning lead, itself proposed as a loanword from Anatolian Luvian and Lydian languages, since its ores were confused with lead ores.

43 Technetium

Bearbeiten

43. Technetium ist ein chemisches Element mit dem Elementsymbol Tc und der Ordnungszahl 43. Es zählt zu den Übergangsmetallen, im Periodensystem steht es in der 5. Periode und der 7. Nebengruppe (Gruppe 7) oder Mangangruppe. Technetium war das erste künstlich hergestellte Element und erhielt deswegen seinen aus dem altgriechischen Wort τεχνητός (/tɛçne'tos/ „künstlich“) hergeleiteten Namen. Schon 1925 war die Entdeckung des Elements durch Walter Noddack, Ida Tacke und Otto Berg berichtet worden, die ihm den Namen Masurium gaben. In einigen älteren Büchern wird Technetium daher mit „Ma“ abgekürzt. -- Alle Technetium-Isotope sind radioaktiv, das heißt, sämtliche Atomkerne, die 43 Protonen enthalten, sind instabil und zerfallen. Technetium und das schwerere Promethium (61) sind die einzigen Elemente mit kleinerer Ordnungszahl als Blei (82), die diese Eigenschaft besitzen. -- Viele Jahre gab es in dem von dem russischen Chemiker Dmitri Mendelejew vorgeschlagenen Periodensystem der Elemente eine Lücke zwischen den Elementen Molybdän (42) und Ruthenium (44), die auf ein bisher unidentifiziertes Element hinwies. Mendelejew selbst gab ihm den Namen Eka-Mangan und sagte mit guter Näherung unter anderem seine Masse voraus. In der Folgezeit versuchten zahlreiche Forscher, das fehlende Element zu entdecken; seine Position im Periodensystem stärkte die Annahme, dass es leichter zu finden sei als andere, noch unentdeckte Elemente mit höheren Ordnungszahlen. -- Die Anzahl der vermeintlichen Nachweise des Elements, sowie der mit dem Element in Verbindung gebrachten Entdeckungen ist ungewöhnlich groß. -- Die erste vermeintliche Entdeckung, die mit dem Technetium in Verbindung gebracht wurde, ist die des Poliniums 1828 durch Gottfried Osann. Dieser meinte, neben der tatsächlichen Entdeckung des Rutheniums, auch ein Element entdeckt zu haben, das er Polinium nannte. Es stellte sich allerdings bald heraus, dass es sich bei dem Fund um unreines Iridium handelte. Auf Grund der Lage im damals noch nicht bekannten Periodensystem wird die Entdeckung mit dem Technetium in Verbindung gebracht. -- Das nächste vermeintliche Element, das für das spätere Technetium gehalten wurde, war das 1846 entdeckte Ilmenium. Über dieses, angeblich dem Niob und Tantal ähnliche Element (wahrscheinlich war es unreines Niob) wurde von seinem Entdecker R. Hermann 30 Jahre nach der Entdeckung und unter Einbeziehung des inzwischen erfundenen Periodensystems behauptet, es würde das fehlende Eka-Mangan sein. Auch das 1847 von Heinrich Rose vermeintlich gefundene Pelopium wurde für Technetium gehalten. -- Die erste Fehlentdeckung, bei der tatsächlich nach dem fehlenden Element mit der Ordnungszahl 43 gesucht wurde, war das Davyum. 1877 meldete der russische Chemiker Serge Kern die Entdeckung des fehlenden Elements in Platinerz und gab dem vermeintlichen Element nach dem englischen Chemiker Sir Humphry Davy den Namen Davyum. Der Fund stellte sich jedoch als Mischung aus Iridium, Rhodium und Eisen heraus. -- 1937, 66 Jahre nachdem Dmitri Mendelejew viele der Eigenschaften Technetiums vorhergesagt hatte, wurde das Element schließlich auf unumstrittene Weise nachgewiesen. Emilio Segrè und Carlo Perrier, beide an der Universität Palermo tätig, isolierten das neue Element aus einer mit Deuteronen bombardierten Molybdänfolie

44 Ruthenium

Bearbeiten

44. [[Ruthenium (v. lateinisch ruthenia „Ruthenien“) ist ein chemisches Element mit dem Elementsymbol Ru und der Ordnungszahl 44. Es zählt zu den Übergangsmetallen, im Periodensystem steht es in der 5. Periode und der Gruppe 8 (früher Teil der 8. Nebengruppe) oder auch Eisengruppe. Es ist ein silberweißes, hartes und sprödes Platinmetall. -- Ruthenium wurde 1844 vom deutschbaltischen Chemiker Karl Ernst Claus in sibirischen Platinerzen entdeckt. Es ist sehr selten und wird nur in geringen Mengen genutzt. Die Hauptanwendungsgebiete des Metalls liegen in der Elektronikindustrie beim Perpendicular Recording, einem Datenspeicherverfahren für Festplatten, und als Katalysator in verschiedenen chemischen Verfahren wie Hydrierungen, Methanisierung oder bei der Ammoniaksynthese. Einige Rutheniumverbindungen, z.B. die Grubbs-Katalysatoren, spielen ebenfalls eine Rolle in chemischen Synthesen. -- Ruthenien (abgeleitet von Ruthenia, dem lateinischen Namen für Rus) ist im deutschen Sprachgebrauch ein historischer Landschaftsname, den im Laufe der Geschichte verschiedene Gebiete Osteuropas trugen, meistens im Bereich der heutigen Staaten Ukraine und Weißrussland. -- Das Wort Ruthene (Ruthenen) leitet sich vom lateinischen ruthenus (rutheni) ab, das wiederum ab dem 11. Jahrhundert als die lateinische Entsprechung des Ethnonyms Rusyn/Rusin belegt ist. Der Ausdruck „Ruthenen“ selbst bezeichnet die seit etwa dem 15. Jahrhundert im Großfürstentum Litauen, in Polen-Litauen und dem Königreich Ungarn lebenden Slawen östlichen christlichen Glaubens.

45 Rhodium

Bearbeiten

45. Rhodium ist ein chemisches Element mit dem Elementsymbol Rh und der Ordnungszahl 45. Es ist ein silberweißes, hartes, unreaktives Übergangsmetall. Im Periodensystem zählt es zusammen mit Cobalt, Iridium und Meitnerium zur 9. Gruppe oder Cobaltgruppe. Rhodium besitzt große Ähnlichkeit zu anderen Platinmetallen wie Platin oder Palladium. Dies betrifft beispielsweise die für Edelmetalle charakteristische geringe Reaktivität und eine hohe katalytische Aktivität. -- Rhodium wird daher, oft in Form von Legierungen, vorwiegend als Katalysator eingesetzt. Als wichtiger Bestandteil von Fahrzeugkatalysatoren wird es zur Reduktion von Stickoxiden eingesetzt. Auch in industriellen Prozessen zur Herstellung einiger chemischen Grundstoffe, wie dem Ostwald-Verfahren zur Salpetersäure-Produktion, werden Rhodiumkatalysatoren genutzt. Da das Metall in der Natur sehr selten vorkommt und gleichzeitig eine breite Anwendung findet, zählt es zu den teuersten Metallen überhaupt. -- Rhodium wurde 1803 von William Hyde Wollaston in einem aus Südamerika stammenden Rohplatinerz entdeckt. Im gleichen Erz wurden von Wollaston und Smithson Tennant drei weitere Platinmetalle, Palladium, Iridium und Osmium, entdeckt. Dazu lösten sie das Erz zunächst in Königswasser. Es bildete sich eine lösliche Fraktion und ein schwarzer Rückstand, in dem Tennant Osmium und Iridium fand. Wollaston fällte aus der Königswasserlösung Rhodium und einige weitere Bestandteile mit Zinkpulver. Nach der Abtrennung von Kupfer und Blei mit verdünnter Salpetersäure, erneutem Lösen in Königswasser und Zugabe von Natriumchlorid bildete sich Na3[RhCl6] · n H2O, das beim Verdunsten der Flüssigkeit als rosarotes Salz zurückblieb. Aus diesem konnte Wollaston durch Extraktion mit Ethanol und Reduktion mit Zink das elementare Rhodium gewinnen. Der Name wurde von Wollaston nach dem griechischen ρόδου rhodeos: „rosenrot“ gewählt, da viele Rhodiumverbindungen diese Farbe zeigen.

46 Palladium

Bearbeiten

46. Palladium ist ein chemisches Element mit dem Elementsymbol Pd und der Ordnungszahl 46. Das seltene silberweiße Übergangsmetall zählt zu den Platinmetallen, im Periodensystem steht es in der 5. Periode und der 10. Gruppe (früher Teil der 8. Nebengruppe) oder Nickelgruppe. Es ähnelt im chemischen Verhalten sehr dem Platin. -- Palladium wurde 1803 von William Hyde Wollaston entdeckt. Er benannte es 1804 nach dem zwei Jahre vorher entdeckten Asteroiden Pallas. -- Pallas ist mit einem mittleren Durchmesser von 546 km der größte Asteroid und der zweitgrößte Himmelskörper im Asteroiden-Hauptgürtel, wahrscheinlich sogar ein Zwergplanet. -- Wollaston fand das Element 46 in südamerikanischem Platinerz aufgrund zu geringer Ausbeuten an Platin aus in Königswasser aufgelösten Proben. -- 2010 geriet es ins Blickfeld der Weltöffentlichkeit: Drei Forscher erhielten den Chemie-Nobelpreis für ein Verfahren, das mit Hilfe von Palladium als Katalysator effiziente Wege ermöglicht, Kohlenstoffatome zu komplexen Molekülen zu verbinden.

47 Silber

Bearbeiten

47. Silber ist ein chemisches Element mit dem Elementsymbol Ag und der Ordnungszahl 47. Es zählt zu den Übergangsmetallen, im Periodensystem steht es in der 5. Periode und der 1. Nebengruppe (Gruppe 11) oder Kupfergruppe. Das Elementsymbol Ag leitet sich vom lateinischen Wort argentum für „Silber“ ab. Silber ist ein Edelmetall. -- Es ist ein weiches, gut verformbares (duktiles) Schwermetall mit der höchsten elektrischen Leitfähigkeit aller Elemente und der höchsten thermischen Leitfähigkeit aller Metalle, lediglich Supraflüssigkeiten und Diamanten weisen eine bessere thermische Leitfähigkeit auf. -- Das Wort „Silber“ leitet sich über das althochdeutsche silabar aus der gemeingermanischen Wurzel *silubra- ab. Aus dieser Wurzel leiten sich auch die Bezeichnungen in den anderen germanischen (engl. silver), den baltischen (litauisch sidabras) und slawischen Sprachen (russisch серебро) sowie das baskische zilar ab. -- In den meisten anderen indoeuropäischen Sprachen geht das Wort für Silber auf die genuin indogermanische Wurzel *arg zurück, so griechisch argyros (ἄργυρος) und lat. argentum. Wegen seiner Vorkommen von Silbererzen erhielt Argentinien seinen Namen; es ist das einzige nach einem chemischen Element benannte Land. Andererseits ist die Namensgebung eines Elementes nach einem Land häufiger, z. B. Francium, Germanium und Polonium.

48 Cadmium

Bearbeiten

48. Cadmium (auch Kadmium; aus dem griech. καδμία, καδμεία, καδθμία ≡ kadmía, lat. cadmea , oxidische oder carbonathaltige Zinkerde) ist ein chemisches Element mit dem Elementsymbol Cd und der Ordnungszahl 48. Es wird meist zu den Übergangsmetallen gezählt, auch wenn es eine abgeschlossene d-Schale besitzt und damit eher den Hauptgruppenelementen, vor allem den Erdalkalimetallen ähnelt. Im Periodensystem steht es in der 5. Periode sowie der 2. Nebengruppe (Gruppe 12) oder Zinkgruppe. -- 1817 entdeckten Friedrich Stromeyer und Carl Samuel Hermann unabhängig voneinander Cadmium (lateinisch cadmia, griechisch kadmeia für Galmei) in verunreinigtem Zinkcarbonat. -- Smithsonit, veraltet auch als Zinkspat, edler Galmei oder Edelgalmei bezeichnet und als chemische Verbindung Zinkcarbonat bekannt, ist ein eher selten vorkommendes Mineral aus der Mineralklasse der Carbonate. -- Stromeyer bemerkte, dass sich verunreinigtes Zinkcarbonat beim Erhitzen verfärbte – ein Verhalten, das reines Zinkcarbonat nicht zeigte. Annähernd 100 Jahre wurde das Metall nur in Deutschland gewonnen. -- Die Bezeichnung Cadmium wurde schon im Mittelalter verwendet, vermutlich für Zink.

49 Indium

Bearbeiten

49. Indium ist ein chemisches Element mit dem Symbol In und der Ordnungszahl 49. Im Periodensystem der Elemente steht es in der 5. Periode und ist das vierte Element der 3. Hauptgruppe (nach neuer Zählung Gruppe 13) oder Borgruppe. Indium ist ein seltenes, silberweißes und weiches Schwermetall. Seine Häufigkeit in der Erdkruste ist vergleichbar der von Silber. -- Das Metall wird heute zum größten Teil zu Indiumzinnoxid verarbeitet, das als transparenter Leiter für Flachbildschirme und Touchscreens eingesetzt wird. Seit der Jahrtausendwende hat die damit verbundene gestiegene Nachfrage zu einem deutlichen Anstieg der Indiumpreise und zu Diskussionen über die Reichweite der Vorkommen geführt. -- Indium wurde 1863 von den deutschen Chemikern Ferdinand Reich und Theodor Richter an der Bergakademie Freiberg entdeckt. Sie untersuchten eine in der Umgebung gefundene Sphalerit-Probe nach Thallium. Dabei fanden sie im Absorptionsspektrum anstatt der erwarteten Thallium-Linien eine bisher unbekannte indigoblaue Spektrallinie und damit ein bisher unbekanntes Element. Nach dieser erhielt das neue Element später seinen Namen.

50. Zinn (mittel-/althochdeutsch zin; vielleicht verwandt mit althochdeutsch zein: „Stab, Stäbchen, Zweig“ - in bezug auf das Auftreten von Zinn in Form von "Stäbchen") ist ein chemisches Element mit dem Elementsymbol Sn (lat. Stannum) und der Ordnungszahl 50. Im Periodensystem steht es in der 5. Periode sowie der 4. Hauptgruppe (Gruppe 14) oder Kohlenstoffgruppe. Das silberweiß glänzende und sehr weiche Schwermetall lässt sich mit dem Fingernagel ritzen. Zinn hat einen sehr niedrigen Schmelzpunkt. -- Das Metall Zinn ist seit spätestens 3500 v. Chr. bekannt, wie Bronzefunde der Kura-Araxes-Kultur im Südkaukasus bekunden. Im südtürkischen Taurus-Gebirge, wo auch Zinn abgebaut worden sein könnte, wurden das Bergwerk Kestel und die Verarbeitungsstätte Göltepe entdeckt und auf etwa 3000 v. Chr. datiert. Ob es sich hier um die Quelle des großen vorderasiatischen Zinnverbrauches handelte, bleibt vorläufig offen. So wurde seit dem 2. Jahrtausend v. Chr. in Mittelasien an der Route der späteren Seidenstraße Zinn nachweislich in größerem Maße in Bergwerken abgebaut. Auch in einem ägyptischen Grabmal aus der 18. Dynastie (~1500 v. Chr.) wurden Gegenstände aus Zinn gefunden. Ab etwa 1800 v. Chr. während der Shang-Dynastie ist Zinn in China bekannt.

51 Antimon

Bearbeiten

51. Antimon [antiˈmoːn] (von lat. Antimonium, vermutlich von arabisch ithmid / ‏إثمد‎ / iṯmid; Symbol von lateinisch Stibium „(Grau-)Spießglanz“) ist ein chemisches Element mit dem Elementsymbol Sb und der Ordnungszahl 51. Im Periodensystem steht es in der 5. Periode und der 5. Hauptgruppe (Gruppe 15) oder Stickstoffgruppe. In der stabilen Modifikation ist es ein silberglänzendes und sprödes Halbmetall. -- Als Typlokalität für gediegen Antimon gilt zwar die Silbermine in der schwedischen Gemeinde Sala im Västmanland, allerdings war metallisches Antimon schon den Chinesen und Babyloniern bekannt und einige seiner Verbindungen wurden schon in der Bronzezeit als Zuschlag zu Kupfer verwendet, um Bronze herzustellen. -- Im 17. Jahrhundert ging der Name Antimon als Bezeichnung auf das Metall über. Die koptische Bezeichnung für das Schminkpuder Antimonsulfid ging über das Griechische in das Lateinische stibium über. Die von Jöns Jakob Berzelius benutzte Abkürzung Sb wird noch heute als Elementsymbol genutzt. Ganz sicher ist diese Herleitung nicht. Es gibt auch andere Vermutungen über die Herkunft der Elementbezeichnung. Der ungewöhnliche Name gehe auf das spätgriechische anthemon (deutsch: „Blüte“) zurück. Damit sollen die stengelartigen Kristalle, die büschelförmig angeordnet sind und wie eine Blüte aussehen, beschrieben werden.

52 Tellur

Bearbeiten

52. Tellur [tɛˈluːr] (lat. tellus „Erde“) ist ein seltenes chemisches Element mit dem Elementsymbol Te und der Ordnungszahl 52. Im Periodensystem steht es in der sechsten Hauptgruppe (Gruppe 16) und 5. Periode und zählt damit zu den Chalkogenen. Seine Häufigkeit entspricht ungefähr der von Gold, mit dem es auch verschiedene Verbindungen eingeht, die in der Natur als Minerale auftreten. Kristallines Tellur ist ein silberweißes, metallisch glänzendes Halbmetall, das im Aussehen Zinn und Antimon ähnelt. Es reagiert spröde auf mechanische Belastung und kann daher leicht pulverisiert werden. In chemischen Verbindungen mit Nichtmetallen steht es in seinem Verhalten Schwefel und Selen nahe, in Legierungen und intermetallischen Verbindungen zeigt es jedoch sehr ausgeprägte (halb-)metallische Eigenschaften. -- Tellur wurde 1782 von dem österreichischen Chemiker und Mineralogen Franz Joseph Müller von Reichenstein (1740–1825) bei Untersuchungen von Gold-Erzen aus der Grube Mariahilf am Berg Faczebaja bei Zlatna (dt. Klein Schlatten, ung. Zalatna) nahe Sibiu (dt. Hermannstadt, Siebenbürgen, Rumänien) entdeckt, die eine geringere Goldausbeute als erwartet erbrachten.

53. Iod (standardsprachlich: Jod) ist ein chemisches Element mit dem Elementsymbol I und der Ordnungszahl 53. Im Periodensystem steht es in der 7. Hauptgruppe (17. Gruppe) und gehört somit zu den Halogenen. Der Name leitet sich vom altgriechischen Wort „ioeides“ (ιώο-ειδης) für „veilchenfarbig, violett“ ab. Beim Erhitzen freigesetzte Dämpfe sind charakteristisch violett. -- Iod ist bei Raumtemperatur ein Feststoff, der schlecht wasserlöslich, aber gut löslich in wässriger Kaliumiodid-Lösung und sehr gut löslich in Ethanol und anderen organischen Lösungsmitteln ist. -- In der Alltagssprache ist Jod die gebräuchliche Schreibweise. Iod wird im Duden in dieser Schreibweise aufgeführt, jedoch auf die Fachsprache verwiesen. Das Elementsymbol I hingegen wird erst in der neueren chemischen Fachliteratur benutzt, da in der älteren Literatur die Elementbezeichnung J durchgängig genutzt wird. -- Als Vorbeugung wird der wöchentlich ein- bis mehrmalige Verzehr von Seefisch sowie sogenanntem Iodsalz (Speisesalz mit Natrium- oder Kaliumiodat versetzt) empfohlen. Deutschland ist nach wie vor ein Iodmangelgebiet (Stand 1997). -- Die physiologische Bedeutung iodhaltiger Zubereitungen war schon im Altertum bekannt. So wurden bereits 1500 Jahre vor unserer Zeitrechnung Kropfkranken die iodhaltigen Schilddrüsen von Schafen oder Aschen von Meeresschwämmen verordnet. -- Iod wurde im Jahr 1811 durch den Pariser Salpetersieder Bernard Courtois bei der Herstellung von Schießpulver erstmals aus der Asche von Seetang gewonnen. Den elementaren Charakter erforschten jedoch erst ab 1813 die französischen Naturwissenschaftler Nicolas Clément-Désormes und Joseph Louis Gay-Lussac, der ihm ein Jahr später den heutigen Namen verlieh.

54 Xenon

Bearbeiten

54. Xenon ist ein chemisches Element mit dem Elementsymbol Xe und der Ordnungszahl 54. Im Periodensystem steht es in der 8. Hauptgruppe (Gruppe 18) und zählt daher zu den Edelgasen. Wie die anderen Edelgase ist es ein farbloses, äußerst reaktionsträges, einatomiges Gas. In vielen Eigenschaften wie Schmelz- und Siedepunkt oder Dichte steht es zwischen dem leichteren Krypton und dem schwereren Radon. -- Xenon ist das seltenste nicht-radioaktive Element auf der Erde und kommt in geringen Mengen in der Atmosphäre vor. Trotz seiner Seltenheit kann es vielfach eingesetzt werden, so als Füllgas von Xenon-Gasentladungslampen, die unter anderem in Autoscheinwerfern (Xenonlicht) eingesetzt werden und als Inhalationsanästhetikum. -- Das Edelgas wurde 1898 von William Ramsay und Morris William Travers durch fraktionierte Destillation von flüssiger Luft entdeckt. Xenon ist das Edelgas mit der umfangreichsten Chemie, es sind eine größere Anzahl Xenonverbindungen bekannt. Die stabilste ist dabei das Xenon(II)-fluorid, das als starkes Oxidations- und Fluorierungsmittel eingesetzt wird.

55 Caesium

Bearbeiten

55. Caesium (nach IUPAC), standardsprachlich Cäsium oder Zäsium (im amerikanischen Englisch Cesium), ist ein chemisches Element mit dem Elementsymbol Cs und der Ordnungszahl 55. Im Periodensystem steht es in der 1. Hauptgruppe und gehört zu den Alkalimetallen. Caesium ist das schwerste stabile Alkalimetall. -- Caesium wurde 1861 von Robert Wilhelm Bunsen und Gustav Robert Kirchhoff in Dürkheimer Mineralwasser entdeckt. Aufgrund der zwei blauen Spektrallinien, mit denen das Element nachgewiesen wurde, nannten sie es nach dem lateinischen caesius für himmelblau. Das Reinelement konnte erstmals 1881 von Carl Setterberg dargestellt werden. -- Caesium ist ein extrem reaktives, sehr weiches, goldfarbenes, in hochreinem Zustand silbrig glänzendes Metall. Da es sofort und sehr heftig mit Luft reagiert, wird es in abgeschmolzenen Glasampullen aufbewahrt. Eine biologische Bedeutung des Elements ist nicht bekannt, es kommt normalerweise nicht im Körper vor und ist nicht toxisch. -- Das radioaktive Isotop 137Cs, ein Produkt der Kernspaltung, fand in der Öffentlichkeit besondere Beachtung, als es infolge der Katastrophe von Tschernobyl am 26. April 1986 in größeren Mengen in die Umwelt gelangte. -- Caesium wurde erstmals 1861 von Gustav Robert Kirchhoff und Robert Wilhelm Bunsen beschrieben. Sie untersuchten Mineralwasser aus Dürkheim und entdeckten nach der Abtrennung von Calcium, Strontium, Magnesium und Lithium zwei bisher unbekannte Linien im blauen Spektralbereich. Sie schlossen aus ihren Beobachtungen, dass es im untersuchten Mineralwasser ein weiteres, bisher unbekanntes Element geben müsse, das sie wegen der blauen Spektrallinien Caesium, nach dem lateinischen caesius für himmelblau, nannten.

56 Barium

Bearbeiten

56. Barium (von griech. βαρύς: „schwer“, wegen der großen Dichte des Bariumminerals Baryt) ist ein chemisches Element mit dem Elementsymbol Ba und der Ordnungszahl 56. Im Periodensystem steht es in der sechsten Periode und der 2. Hauptgruppe (Gruppe 2) und zählt damit zu den Erdalkalimetallen. Es wurde erstmals 1774 von Carl Wilhelm Scheele identifiziert. Barium ist im elementaren Zustand metallisch-glänzend und von silbrig-weißer Farbe. Es kommt in der Natur wegen seiner hohen Reaktivität nicht elementar vor. Metallisches Barium ist leicht entzündlich. Wasserlösliche Bariumverbindungen sind giftig. -- Erstmals wurden bariumhaltige Minerale im Jahr 1602 durch den italienischen Schuhmacher und Alchemisten Vincenzo Casciarolo untersucht, dem glänzende Steinchen auffielen, die nach dem Erhitzen im Dunkeln leuchteten. Sie wurden durch die Publikationen des Ulisse Aldrovandi einem größerem Publikum als „Bologneser Stein“ bekannt. Es handelte sich dabei um Baryt, der beim Erhitzen mit organischen Substanzen phosphoresziert. -- 1774 wurde von dem schwedischen Chemiker Carl Wilhelm Scheele bei der Untersuchung von Gips erstmals Bariumoxid BaO identifiziert, das zunächst neue alkalische Erde genannt wurde.

57 Lanthan

Bearbeiten

57. Lanthan [lanˈtaːn] ist ein chemisches Element mit dem Elementsymbol La und der Ordnungszahl 57. Es zählt zu den Übergangsmetallen sowie den Metallen der seltenen Erden, im Periodensystem steht es in der 6. Periode und der 3. Nebengruppe (Gruppe 3) oder Scandiumgruppe. Meist wird es auch zu den Lanthanoiden gezählt, auch wenn die f-Schale des Elementes unbesetzt ist. -- Lanthan (griech. λανθάνειν, lanthanein, „verborgen sein“) wurde 1839 vom schwedischen Chemiker und Chirurg Carl Gustav Mosander entdeckt. Aus einem vermeintlich reinen Cernitrat gewann er durch fraktionierte Kristallisation Lanthansulfat.

58. Cer [t͡seːr] (auch Zer bzw. Cerium genannt) ist ein chemisches Element mit dem Elementsymbol Ce und der Ordnungszahl 58. Im Periodensystem steht es in der Gruppe der Lanthanoide und zählt damit auch zu den Metallen der seltenen Erden. -- Cer wurde 1803 von Jöns Jacob Berzelius und Wilhelm von Hisinger und gleichzeitig von Martin Heinrich Klaproth entdeckt und nach dem Zwergplaneten Ceres benannt. -- Ceres oder – in der Nomenklatur für Asteroiden – (1) Ceres ist ein Zwergplanet und mit einem Äquatordurchmesser von 975 km das größte Objekt im Asteroiden-Hauptgürtel. Sie besitzt keinen bekannten Mond. Ceres wurde am 1. Januar 1801 von Giuseppe Piazzi als erster Kleinplanet entdeckt, galt lange als Asteroid und wird seit 2006 zur Gruppe der Zwergplaneten gezählt. Sie ist benannt nach der römischen Göttin des Ackerbaus.

59 Praseodym

Bearbeiten

59. Praseodym ist ein chemisches Element mit dem Elementsymbol Pr und der Ordnungszahl 59. Im Periodensystem steht es in der Gruppe der Lanthanoide und zählt damit auch zu den Metallen der seltenen Erden. Von der Grünfärbung seiner Verbindungen kommt auch der Name: das griechische Wort prásinos bedeutet „lauchgrün“, didymos „doppelt“ oder „Zwilling“. -- 1841 extrahierte Carl Gustav Mosander die seltene Erde Didym aus Lanthanoxid. 1874 bemerkte Per Teodor Cleve, dass es sich bei Didym eigentlich um zwei Elemente handelte. Im Jahr 1879 isolierte Lecoq de Boisbaudran Samarium aus Didym, das er aus dem Mineral Samarskit gewann. 1885 gelang es Carl Auer von Welsbach, Didym in Praseodym und Neodym zu trennen, die beide Salze mit verschiedenen Farben bilden.

60 Neodym

Bearbeiten

60. Neodym (Nomenklaturempfehlung war zeitweise: Neodymium) ist ein chemisches Element mit dem Elementsymbol Nd und der Ordnungszahl 60. Im Periodensystem steht es in der Gruppe der Lanthanoide und zählt damit auch zu den Metallen der seltenen Erden. Die Elementbezeichnung leitet sich von den griechischen Worten νέος neos für „neu“ und δίδυμος didymos für „Zwilling“ (als Zwilling von Lanthan) ab. -- Das Metall wird vor allem für starke Magnete verwendet. -- Neodym wurde zusammen mit Praseodym 1885 durch Carl F. Auer von Welsbach aus dem von Carl Gustav Mosander entdeckten Didym isoliert.

61 Promethium

Bearbeiten

61. Promethium (von Prometheus, einem Titanen der griechischen Mythologie) ist ein chemisches Element mit dem Elementsymbol Pm und der Ordnungszahl 61. Im Periodensystem steht es in der Gruppe der Lanthanoide und zählt damit auch zu den Metallen der seltenen Erden. -- Prometheus (altgr. Προμηθεύς, Betonung lat. u. dtsch. Prométheus, Gen. Προμηθέως (Promēthéōs); dt. der Vorausdenkende) ist in der griechischen Mythologie der Freund und Kulturstifter der Menschheit. Oft wird er auch als Schöpfer der Menschen und Tiere bezeichnet, so beispielsweise bei Platon. -- Den Namen Promethium wählten sie in Anlehnung an den griechischen Titanen Prometheus, der den Menschen das Feuer brachte und so den Zorn der Götter erweckte. Dies war als Warnung an die Menschheit gedacht, die zu diesem Zeitpunkt mit dem nuklearen Wettrüsten begann. -- Alle Promethium-Isotope sind radioaktiv, das heißt, sämtliche Atomkerne, die 61 Protonen enthalten, sind instabil und zerfallen. Promethium und das leichtere Technetium (43) sind die einzigen Elemente mit kleinerer Ordnungszahl als Blei (82), die diese Eigenschaft besitzen.

62 Samarium

Bearbeiten

62. Samarium (nach dem Mineral Samarskit, das wiederum benannt nach dem Bergingenieur W. M. Samarski) ist ein chemisches Element mit dem Elementsymbol Sm und der Ordnungszahl 62. Im Periodensystem steht das silbrig glänzende Element in der Gruppe der Lanthanoide und zählt damit auch zu den Metallen der seltenen Erden. -- Mineral- und Elementbezeichnung leiten sich ab von dem russischen Berginspektor (Bergbaubeamten) Oberst Samarsky, der das Mineral entdeckte. -- Natürlich kommt elementares Samarium nicht vor. Einige Mineralien wie Monazit, Bastnäsit und Samarskit enthalten jedoch das Element. Monazit enthält bis zu 1 % Samarium.

63 Europium

Bearbeiten

63. Europium ist ein chemisches Element mit dem Elementsymbol Eu und der Ordnungszahl 63. Im Periodensystem steht es in der Gruppe der Lanthanoide und zählt damit auch zu den Metallen der seltenen Erden. Europium ist neben Americium das einzige nach einem Erdteil benannte Element. -- Paul Emile Lecoq de Boisbaudran entdeckte 1890 in einem Samarium-Gadolinium-Konzentrat unbekannte Spektrallinien. Die Entdeckung des Elementes wird Eugene Anatole Demarcay zuerkannt, der 1896 in dem gerade entdeckten Samarium ein weiteres Element vermutete. 1901 gelang ihm die Abtrennung des Europiums. -- Metallisches Europium wurde erst Jahre später hergestellt.

64 Gadolinium

Bearbeiten

64. Gadolinium ist ein chemisches Element mit dem Elementsymbol Gd und der Ordnungszahl 64. Im Periodensystem steht es in der Gruppe der Lanthanoide und zählt damit auch zu den Metallen der seltenen Erden. -- Das erste Element der Yttererden im Periodensystem wurde 1880 spektroskopisch von Jean Charles Galissard de Marignac im Didym und Gadolinit gefunden. 1886 stellte er es als weißes Oxid aus Samarskit her und nannte es Y aus Samarskit. Im gleichen Jahr stellte Paul Emile Lecoq de Boisbaudran ebenfalls Gadoliniumoxid her und nannte das neue Element nach dem Entdecker des Minerals Gadolinit, dem finnischen Chemiker Johan Gadolin, Gadolinium. -- Erst 1935 gelang Georges Urbain die Darstellung des Metalls.

65 Terbium

Bearbeiten

65. Terbium ist ein chemisches Element mit dem Elementsymbol Tb und der Ordnungszahl 65. Im Periodensystem steht es in der Gruppe der Lanthanoide und zählt damit auch zu den Metallen der seltenen Erden. Terbium ist nach dem ersten Fundort, der Grube Ytterby bei Stockholm, benannt, wie auch Yttrium, Ytterbium und Erbium. -- Die Entdeckung des Elementes Terbium ist sehr verworren und bis heute nicht geklärt. Allgemein sieht man Carl Gustav Mosander als Entdecker an, der Anfang der 1840er die von Johan Gadolin entdeckte Yttererde untersuchte. Die vermeintlich reine Terbium-Verbindung war aber eine Mischung mehrerer Lanthanoide (Bunsen). -- Reines Terbium wurde erst mit Aufkommen der Ionenaustauschtechnik nach 1945 hergestellt. -- Aus dem Namen der schwedischen Grube Ytterby leitete Mosander die Elementbezeichnung ab.

66 Dysprosium

Bearbeiten

66. Dysprosium (von griech. δυσπρόσιτος „unzugänglich“) ist ein chemisches Element mit dem Elementsymbol Dy und der Ordnungszahl 66. Im Periodensystem steht es in der Gruppe der Lanthanoide und zählt damit auch zu den Metallen der seltenen Erden. -- 1886 gelang dem Franzosen P.E. Lecoq de Boisbaudran die Isolierung von Dysprosiumoxid aus einer Probe Holmiumoxid, das man bis zu diesem Zeitpunkt noch für eine einheitliche Substanz gehalten hatte. Da die chemischen Eigenschaften der Lanthanoide sehr ähnlich sind und sie in der Natur stets vergesellschaftet vorkommen, war auch hier eine Unterscheidung nur mit sehr aufwändigen Analysemethoden möglich. Sein Anteil am Aufbau der Erdkruste wird mit 0,00042 Gewichtsprozent angegeben.

67 Holmium

Bearbeiten

67. Holmium ist ein chemisches Element mit dem Elementsymbol Ho und der Ordnungszahl 67. Im Periodensystem steht es in der Gruppe der Lanthanoide und zählt damit auch zu den Metallen der seltenen Erden. -- 1878 entdeckten die Schweizer Chemiker Marc Delafontaine und Jacques-Louis Soret das Element spektroskopisch durch seine abweichenden Absorptionslinien. Das neue Element nannten sie ›X‹. 1879 entdeckte der schwedische Chemiker Per Teodor Cleve das neue Element unabhängig von den beiden Schweizern und isolierte es als gelbes Oxid aus unreinem Erbium (Erbiumoxid). Cleve wendete eine von Carl Gustav Mosander entwickelte Methode an; er trennte zunächst alle bekannten Verunreinigungen ab, bevor er versuchte, den Rest zu trennen. Er erhielt einen braunen Rest, den er Holmia nannte, sowie einen grünen Rest, der den Namen Thulia erhielt. -- Erst 1911 gelang dem schwedischen Chemiker Holmberg die Gewinnung von reinem Holmiumoxid. Ob er die Bezeichnung Holmium, vorgeschlagen von Cleve für die schwedische Landeshauptstadt Stockholm, übernahm oder als Ableitung seines eigenen Namens betrachtete, ist nicht bekannt. -- Metallisch reines Holmium wurde erstmals 1940 hergestellt.

68 Erbium

Bearbeiten

68. Erbium ist ein chemisches Element mit dem Elementsymbol Er und der Ordnungszahl 68. Im Periodensystem steht es in der Gruppe der Lanthanoide und zählt damit auch zu den Metallen der seltenen Erden. Der Name leitet sich von der Grube Ytterby bei Stockholm ab, wie auch der von Ytterbium, Terbium und Yttrium. -- Erbium (nach Ytterby, einer schwedischen Grube) wurde 1843 von Carl Gustav Mosander entdeckt. Allerdings handelte es sich bei dem vermeintlich reinen Oxid um eine Mischung der Oxide aus Erbium, Scandium, Holmium, Thulium und Ytterbium. -- Um die spätere Aufklärung machten sich die Chemiker Marc Delafontaine und Berlin verdient. Reines Erbiumoxid stellten 1905 der französische Chemiker Georges Urbain und der amerikanische Chemiker Charles James her. -- Erbium ist ein seltenes Metall (3,8 ppm).

69 Thulium

Bearbeiten

69. Thulium ist ein chemisches Element mit dem Elementsymbol Tm und der Ordnungszahl 69. Im Periodensystem steht es in der Gruppe der Lanthanoide und zählt damit auch zu den Metallen der seltenen Erden. -- Thulium (benannt nach Thule, der mythischen Insel am Rande der Welt) wurde 1879 von dem schwedischen Chemiker Per Teodor Cleve zusammen mit Holmium in Erbia (Erbiumoxid) entdeckt. -- Das antike Thule (Θούλη, auch Tuli oder Tyle) ist eine von dem antiken griechischen Entdecker Pytheas aus Massilia (Marseille) im 4. Jahrhundert v. Chr. beschriebene Insel, die später eine quasi-mythische Bedeutung erhielt.

70 Ytterbium

Bearbeiten

70. Ytterbium [ʏˈtɛrbiʊm] ist ein chemisches Element mit dem Elementsymbol Yb und der Ordnungszahl 70. Im Periodensystem steht es in der Gruppe der Lanthanoide und zählt damit auch zu den Metallen der seltenen Erden. Ytterbium ist nach dem ersten Fundort, der Grube Ytterby bei Stockholm, benannt, wie auch Yttrium, Terbium und Erbium. -- Ytterbium (abgeleitet von Ytterby, einer Grube auf einer Schäreninsel nördlich von Stockholm, das auch für die Namen der Elemente Yttrium, Terbium und Erbium Pate stand) wurde 1878 von dem schweizerischen Chemiker Jean Charles Galissard de Marignac entdeckt. Marignac fand in der als Erbia bekannten Erde einen neuen Bestandteil und nannte ihn Ytterbia. Er vermutete in der von ihm isolierten Verbindung ein neues Element, das er Ytterbium nannte. 1907 trennte der französische Chemiker Georges Urbain Marignacs Ytterbia in zwei Komponenten, Neoytterbia und Lutetia. Carl Auer von Welsbach arbeitete zur gleichen Zeit ebenfalls mit Ytterbia und nannte die beiden Komponenten Aldebaranium und Cassiopeium. Später verkürzte man die Elementbezeichnung Neoytterbium zu Ytterbium.

71 Lutetium

Bearbeiten

71. Lutetium ist ein chemisches Element mit dem Elementsymbol Lu und der Ordnungszahl 71. Im Periodensystem steht es in der Gruppe der Lanthanoide und zählt damit auch zu den Metallen der seltenen Erden. -- Lutetium wurde 1905 von drei Wissenschaftlern unabhängig voneinander entdeckt: Carl Auer von Welsbach, Charles James und dem Franzosen Georges Urbain, der es nach dem römischen Namen von Paris, Lutetia, benannte. Im deutschen Sprachraum wurde es bis 1949 meist als Cassiopeium (chemisches Zeichen Cp) bezeichnet.

72 Hafnium

Bearbeiten

72. Hafnium ist ein chemisches Element mit dem Symbol Hf und der Ordnungszahl 72. Benannt ist es nach dem lateinischen Namen der Stadt Kopenhagen, Hafnia, in der das Element entdeckt wurde. Es ist ein silbergrau glänzendes, korrosionsbeständiges Übergangsmetall, das im Periodensystem in der 4. Nebengruppe (Gruppe 4) oder Titangruppe steht. -- Hafnium besitzt sehr ähnliche Eigenschaften wie das im Periodensystem direkt darüber gelegene Zirconium.

73 Tantal

Bearbeiten

73. Tantal [ˈtantal] ist ein chemisches Element mit dem Symbol Ta und der Ordnungszahl 73; im Periodensystem steht es in der fünften Nebengruppe oder Vanadiumgruppe. Es ist ein selten vorkommendes, duktiles, graphitgraues, glänzendes Übergangsmetall. Tantal wird vorwiegend für Kondensatoren mit hoher Kapazität bei gleichzeitig geringer Größe verwendet. Da das Metall ungiftig und gegen Körperflüssigkeiten inert ist, wird es auch für Implantate, etwa als Knochennagel, eingesetzt. -- Das Element wurde 1802 von Anders Gustav Ekeberg in einem finnischen Columbit-Erz entdeckt. Er trennte ein sehr beständiges Oxid (Tantal(V)-oxid) ab, das sich in keiner Säure löste. Benannt ist es nach Tantalos, einer Figur aus der griechischen Mythologie. Der Grund für diesen Namen liegt nach Ekeberg darin, dass das sehr beständige Oxid „schmachten muss und seinen Durst nicht löschen kann, wie Tantalus in der Unterwelt“. -- Nahezu zeitgleich fand Charles Hatchett in einem kolumbianischen Erz das sehr ähnliche Columbium. Die beiden Elemente wurden bis 1844 für identisch gehalten, als Heinrich Rose erkannte, dass in den Columbit-Erzen zwei verschiedene Elemente vorlagen, nämlich Tantal und Columbium, das er Niob nannte. -- Tantalos (altgriechisch: Τάνταλος; lateinisch: Tantalus) ist in der griechischen Mythologie der Stammvater des Geschlechts der Tantaliden. Er frevelte gegen die Götter und zog damit einen Fluch auf sein Haus, der über fünf Generationen hinweg seine Nachkommen in eine Kette von Gewalt und Verbrechen stürzen sollte.

74 Wolfram

Bearbeiten

74. Wolfram [ˈvɔlfram] (engl. Tungsten) ist ein chemisches Element mit dem Elementsymbol W und der Ordnungszahl 74. Es zählt zu den Übergangsmetallen, im Periodensystem steht es in der 6. Nebengruppe (Gruppe 6) oder Chromgruppe. Wolfram ist ein weißglänzendes in reinem Zustand sprödes Schwermetall hoher Dichte. Es besitzt von allen reinen Metallen den höchsten Schmelzpunkt und den zweithöchsten Siedepunkt. Seine bekannteste Verwendung ist daher die als Glühwendel in Glühlampen. -- Bereits im 16. Jahrhundert beschrieb der Freiberger Mineraloge Georgius Agricola das Vorkommen eines Minerals in sächsischen Zinnerzen, welches die Zinngewinnung durch Verschlackung des Zinnanteils erheblich erschwerte. Der Namensbestandteil „Wolf“ rührt von dieser Eigenschaft, da das Mineral das Zinnerz wie ein Wolf „auffraß“. Ob es sich dabei um Wolframit handelte, ist auch heute noch umstritten, da er von der „Leichtigkeit“ des Minerals sprach. Er nannte das Mineral lupi spuma, was aus dem Lateinischen übersetzt soviel wie „Wolf(s)-Schaum“ bedeutet. Später wurde es Wolfram genannt, von mhd. rām „Ruß, Dreck“, da sich das schwarzgraue Mineral sehr leicht zerreiben lässt und dann an Ruß erinnert. Sein chemisches Symbol W rührt von Wolfram. -- Das im Englischen, Italienischen und Französischen gebräuchliche Wort Tungsten, leitet sich von Tung Sten (schwedisch für „schwerer Stein“) ab. Damit wurde in Schweden seinerzeit aber nicht Wolfram selbst (schwedisch Volfram), sondern Calciumwolframat bezeichnet.

75 Rhenium

Bearbeiten

75. Rhenium ist ein chemisches Element mit dem Elementsymbol Re und der Ordnungszahl 75. Im Periodensystem der Elemente steht es in der 7. Nebengruppe (Gruppe 7) oder Mangangruppe. Es ist ein sehr seltenes, silberweiß glänzendes, schweres Übergangsmetall. Legierungen mit Rheniumanteilen finden Verwendung in Flugzeugtriebwerken, beim Herstellen von bleifreiem Benzin und in Thermoelementen. -- Die Existenz des späteren Rheniums wurde erstmals 1871 von Dmitri Iwanowitsch Mendelejew als Dwi-Mangan vorhergesagt. Er schloss aus den Gesetzmäßigkeiten des von ihm entworfenem Periodensystems, dass unterhalb des Mangans zwei noch unbekannte Elemente, die späteren Technetium und Rhenium, stehen müssten. -- Entdeckt wurde Rhenium erst 1925 von Walter Noddack, Ida Tacke und Otto Berg. Sie untersuchten Columbit, um die gesuchten Elemente Eka- und Dwi-Mangan zu finden. Da die gesuchten Elemente in den Proben nur in sehr geringem Maße enthalten waren, mussten sie durch Abtrennen der anderen Bestandteile angereichert werden. Schließlich konnte das spätere Rhenium durch Röntgenspektroskopie nachgewiesen werden. -- Noddack und Tacke behaupteten auch, sehr geringe Mengen des Eka-Mangans (später Technetium) gefunden zu haben, jedoch konnte dies nicht durch Darstellung des Elements bestätigt werden. Sie nannten die Elemente nach ihren Heimatgegenden Rhenium (lat. Rhenus für Rhein) und Masurium (von Masuren). Dieser Name (Masurium ) setze sich jedoch nach der Entdeckung des Technetiums 1937 nicht durch.

76 Osmium

Bearbeiten

76. Osmium ist ein chemisches Element mit dem Elementsymbol Os und der Ordnungszahl 76; im Periodensystem der Elemente steht es in der 8. Gruppe, der Eisengruppe. Es ist ein hartes, sprödes, stahlblaues Übergangsmetall und gehört zu den Platinmetallen. Osmium besitzt mit 22,6 g/cm3 die höchste Dichte und den höchsten Kompressionsmodul aller Elemente. -- Osmium, das schwerste Homologe der 8. Gruppe im Periodensystem, wurde 1804 von Smithson Tennant zusammen mit Iridium im Rückstand von in Königswasser aufgelöstem Platin entdeckt. Der Name „Osmium“ entstammt dem rettichartigen Geruch (altgriech. ὀσμή osmē) seines in geringer Konzentration vorhandenen flüchtigen Tetroxids. -- Die erste wichtige Anwendung des Metalls war am Anfang des 20. Jahrhunderts seine Verwendung als Material für Glühfäden in Glühlampen durch Carl Auer von Welsbach. Der Name der Firma Osram leitet sich von den dazu eingesetzten Metallen Osmium und Wolfram ab. In der Anwendung hatte die Verwendung von Osmium jedoch einige Nachteile. Neben dem hohen Preis war vor allem die schwierige Verarbeitung ein Problem. Osmium ist spröde und kann nicht zu Fäden gezogen werden. Daher wurden die Glühfäden durch Spritzen einer osmiumhaltigen Paste und anschließendes Verglühen der organischen Bestandteile hergestellt. Die so erhaltenen Fäden waren allerdings zu dick für hohe Spannungen und außerdem empfindlich gegenüber Erschütterungen und Spannungsschwankungen. Nach kurzer Zeit wurden sie zunächst durch Tantal und schließlich durch Wolfram ersetzt.

77 Iridium

Bearbeiten

77. Iridium ist ein chemisches Element mit dem Symbol Ir und der Ordnungszahl 77. Es zählt zu den Übergangsmetallen, im Periodensystem steht es in der Gruppe 9 (in der älteren Zählung Teil der 8. Nebengruppe) oder Cobaltgruppe. Das sehr schwere, harte, spröde, silber-weiß glänzende Edelmetall aus der Gruppe der Platinmetalle gilt als das korrosionsbeständigste Element. Unter 0,11 Kelvin wechselt es in den supraleitfähigen Zustand über. -- Iridium (griech. ίριοειδής „regenbogenfarbig“ nach der Vielfarbigkeit seiner Verbindungen) wurde 1804 in London von Smithson Tennant zusammen mit Osmium entdeckt. Beim Auflösen eines Rohplatins in Königswasser befanden sich beide Platinmetalle im unlöslichen schwarzen Rückstand. Die Farbvielfalt der Iridiumsalze inspirierte Tennant zu dem Namen Iridium. Auch das "Urkilogramm" sowie das "Urmeter" bestehen aus einer Iridiumlegierung. Es wird seit 1898 in Paris im Bureau International des Poids et Mesures aufbewahrt.

78 Platin

Bearbeiten

78. Platin ist ein chemisches Element mit dem Elementsymbol Pt und der Ordnungszahl 78. Im Periodensystem steht es in der Gruppe 10 (in der alten Zählung Teil der 8. Nebengruppe) oder Nickelgruppe. Platin ist ein schweres, schmiedbares, dehnbares, grau-weißes Übergangsmetall. Das Edelmetall ist sehr korrosionsbeständig und wird zur Herstellung von Schmuckwaren, Fahrzeugkatalysatoren, Laborgeräten, Zahnimplantaten und Kontaktwerkstoffen verwendet. -- Der Name leitet sich vom spanischen Wort platina, der negativ besetzten Verkleinerungsform von plata „Silber“, ab. Die erste europäische Erwähnung stammt von dem italienischen Humanisten Julius Caesar Scaliger. Er beschreibt ein mysteriöses weißes Metall, das sich allen Schmelzversuchen entzog. Eine ausführlichere Beschreibung der Eigenschaften findet sich in einem 1748 veröffentlichten Bericht. -- Platin wurde wahrscheinlich erstmals um 3000 vor Chr. im Alten Ägypten verwendet. Der britische Forscher Sir William Matthew Flinders Petrie (1853–1942) entdeckte im Jahr 1895 altägyptischen Schmuck und stellte fest, dass Platin in kleiner Menge mitverwendet wurde. -- Platin wurde auch von den Indianern Südamerikas benutzt. Es fand sich beim Gewinnen von Goldstaub im Waschgold als Begleitung und konnte nicht explizit abgetrennt werden. Die Schmiede seinerzeit nutzten unbewusst die Tatsache aus, dass sich native Platinkörnchen mit Goldstaub in der Glut von mit Blasebalgen angefachtem Holzkohlefeuer gut verschweißen lassen, wobei das Gold wie ein Lot wirkte und sich durch wiederholtes Schmieden und Erhitzen eine relativ homogene, helle, in der Schmiedehitze verformbare Metalllegierung erzeugen ließ. Diese konnte nicht wieder geschmolzen werden und war genauso beständig wie Gold, allerdings von weißlich-silberartiger Farbe. Schon ein ungefähr 15-prozentiger Platinanteil führt zu einer hellgrauen Farbe. Reines Platin war jedoch noch unbekannt.

79. Gold (von indogermanisch ghel: glänzend, gelb) ist ein chemisches Element mit dem Elementsymbol Au und der Ordnungszahl 79. Es zählt zu den Übergangsmetallen, im Periodensystem steht es in der 1. Nebengruppe (Gruppe 11) oder Kupfergruppe. Das Symbol Au für Gold leitet sich von der lateinischen Bezeichnung Aurum, das Gold, ab. Gold zählt zu den Edelmetallen und ist zusammen mit Kupfer eines der wenigen farbigen Metalle. -- Gold wird seit Jahrtausenden für rituelle Gegenstände und Schmuck sowie seit dem sechsten Jahrhundert v. Chr. in Form von Goldmünzen als Zahlungsmittel verwendet; es gehört somit zu den Münzmetallen. -- Gold zählt zu den ersten Metallen, die von Menschen verarbeitet wurden. Mit seiner auffallend glänzenden gelben Farbe wurde es gediegen, also als Element, in der Natur gefunden, ließ sich sehr gut mechanisch bearbeiten und korrodierte nicht. Wegen der Beständigkeit seines Glanzes, seiner Seltenheit und auffallenden Schwere war es sehr begehrt und wurde in vielen Kulturen vor allem für rituelle Gegenstände verwendet.

80 Quecksilber

Bearbeiten

80. Quecksilber (altgr. ύδράργυρος Hydrargyros ,flüssiges Silber‘, davon abgeleitet das lat. Wort hydrargyrum (Hg), Name gegeben von Dioskurides) ist ein chemisches Element im Periodensystem der Elemente mit dem Symbol Hg und der Ordnungszahl 80. Obwohl es eine abgeschlossene d-Schale besitzt, wird es häufig zu den Übergangsmetallen gezählt, im Periodensystem steht es in der 2. Nebengruppe (Gruppe 12) oder Zinkgruppe. Es ist das einzige Metall und neben Brom das einzige Element, das bei Normalbedingungen flüssig ist. Aufgrund seiner hohen Oberflächenspannung benetzt Quecksilber seine Unterlage nicht, sondern bildet wegen seiner starken Kohäsion linsenförmige Tropfen. Es ist wie jedes andere Metall elektrisch leitfähig. -- Quecksilber bedeutet ursprünglich lebendiges Silber (ahd. quëcsilabar, quëchsilper, mhd. quëcsilber, këcsilber zu germanisch kwikw ,[quick]lebendig‘). Ähnlich ist das lateinische argentum vivum (dt. lebendiges Silber). -- Quecksilber ist mindestens seit der Antike bekannt. So wird es schon in den Werken von Aristoteles, Plinius dem Älteren und anderen Schriftstellern der Antike erwähnt. Im Altertum wurde es als Heilmittel verwendet (aufgrund seiner Toxizität jedoch mit entsprechend negativen Folgen). -- Am Quecksilber wurde vom niederländischen Physiker Heike Kamerlingh Onnes im Jahre 1911 das erste Mal das Phänomen der Supraleitung entdeckt. Ab einer Temperatur von 4,2 Kelvin (−268,9 Grad Celsius) verschwindet dabei der elektrische Widerstand vollständig. -- In der griechischen Antike symbolisierte das Quecksilber den Gott und den Planeten Merkur. Dies wurde von den Römern und den Alchemisten übernommen. Daher ist im Englischen mercury sowohl die Bezeichnung für das Quecksilber als auch für den Planeten und den Gott. Als alternative Bezeichnung für das Metall wird aber auch „Quicksilver“ verwendet. -- Für die mittelalterlichen Alchemisten waren Quecksilber, Schwefel und Salz die drei grundlegenden Elemente. Das Einhorn symbolisierte das Quecksilber.

81 Thallium

Bearbeiten

81. Thallium ist ein chemisches Element mit dem Elementsymbol Tl und der Ordnungszahl 81. Im Periodensystem steht es in der 3. Hauptgruppe (Gruppe 13) oder Borgruppe. Das weiche, graue, dem Blei sehr ähnliche Metall ist äußerst giftig. -- Thallium (von altgriechisch θαλλός thallós ‚grüner Zweig‘; wegen seiner grünen Spektrallinie bei 535 nm) wurde 1861 in England von Sir William Crookes spektroskopisch im Bleikammerschlamm einer Schwefelsäurefabrik anhand der charakteristischen grünen Spektrallinie entdeckt. Zur gleichen Zeit gelang dem Franzosen Auguste Lamy die Darstellung des Metalls auf elektrolytischem Wege. -- Thallium ist kein seltenes Element. Die Weltproduktion ist mit 5 t Thallium pro Jahr gering.

82. Blei ist ein chemisches Element mit dem Elementsymbol Pb (lateinisch plumbum) und der Ordnungszahl 82. Es ist ein giftiges Schwermetall und steht in der 4. Hauptgruppe (Kohlenstoffgruppe) und 6. Periode des Periodensystems. Blei ist leicht verformbar und hat einen vergleichsweise niedrigen Schmelzpunkt. -- Die Isotope 206Pb, 207Pb und 208Pb sind die schwersten stabilen Atome. Mit der magischen Protonenzahl 82 kann diese Stabilität erklärt werden. Bei 208Pb liegt ein so genannter doppelt magischer Kern vor. Bleiisotope treten als Endprodukte von dreien der vier natürlichen Zerfallsreihen der radioaktiven Elemente auf. Dadurch ist relativ viel Blei entstanden, weshalb es in der Erdkruste im Vergleich zu anderen schweren Elementen (Quecksilber, Gold u. a.) häufig vorkommt. -- In der frühen Bronzezeit wurde Blei neben Antimon und Arsen verwendet, um Bronzen zu erzeugen, bis sich Zinn weitgehend durchsetzte. Bereits die Babylonier kannten Vasen aus Blei. -- Die Römer verwendeten das Metall als Material für Gefäße, als Schleudergeschoss, für Plomben (daher der Name) und Wasserleitungen. -- Schon der römische Autor Vitruv hielt die Verwendung von Blei für Trinkwasserrohre für gesundheitsschädlich, er empfahl, nach Möglichkeit Tonrohre zu verwenden; trotzdem waren Trinkwasserrohre aus Blei bis in die 1970er Jahre gebräuchlich. Aus heutiger Sicht besonders bedenklich war die Zugabe von Blei als Süßmittel zum Wein (sogenannter „Bleizucker“). -- Blei spielte auch in der Alchemie eine wichtige Rolle. Auf Grund seiner Ähnlichkeit zu Gold (ähnlich weich und schwer) galt Blei als guter Ausgangsstoff für die Goldsynthese (Synthese als Farbumwandlung von Grau nach Gelb).--

83 Bismut

Bearbeiten

83. Bismut oder Wismut ist ein chemisches Element mit dem Elementsymbol Bi und der Ordnungszahl 83. Im Periodensystem steht es in der 5. Hauptgruppe oder Stickstoffgruppe. -- Der Name des Metalls, der im Deutschen 1390 als wesemut und lat. 1450 als wismutum[13], 1530 als bisemutum erscheint, kann auf die in einer arabischen Dioskurides-Übersetzung des 9. Jahrhunderts belegte Form b[i]sīmūtīyūn zurückgeführt werden, die selbst wohl eine Transliteration von altgriechisch ψιμύθιον psimýthion ‚Bleiweiß‘ darstellt. Auch Entstellung aus arabisch iṯmid ‚Antimon‘ wurde angenommen; öfters wird außerdem auf die angeblich erste Mutung in der Zeche St. Georgen in der Wiesen bei Schneeberg im Erzgebirge im 15. Jahrhundert verwiesen, oder auf die Variante wis(se)mat, die ‚weiße Masse‘ bedeuten soll. -- Das chemische Symbol Bi schlug J. J. Berzelius im Jahr 1814 vor. -- Als eigenes Element wurde Bismut nach der Mitte des 18. Jahrhunderts durch die Chemiker Claude François Geoffroy[8], Johann Heinrich Pott, Carl Wilhelm Scheele und Torbern Olof Bergman nachgewiesen. Zuvor wurde er oft als Abart von Blei, Zinn, Antimon und anderen Metallen oder Mineralien betrachtet, obwohl schon im 16. Jahrhundert Georgius Agricola eine genauere Unterscheidung versuchte.

84 Polonium

Bearbeiten

84. Polonium ist ein radioaktives chemisches Element mit dem Elementsymbol Po und der Ordnungszahl 84. Im Periodensystem steht es in der 6. Hauptgruppe, wird also den Chalkogenen zugeordnet. -- Polonium wurde 1898 vom Ehepaar Pierre und Marie Curie entdeckt. Zu Ehren von Marie Curies Heimat Polen nannten sie es Polonium (vom lateinischen Wort „Polonia“). Marie Curie verzichtete auf die Patentierung des Gewinnungsverfahrens, damit die Erforschung dieses Elements ungehindert weitergehen konnte. Für die Entdeckung und Beschreibung von Polonium (zusammen mit Radium) erhielt Marie Curie 1911 den Nobelpreis für Chemie. -- Poloniumisotope sind Zwischenprodukte der Thorium-Reihe und der Uran-Radium-Reihe, wobei letztere das häufigste Isotop 210Po produziert. Polonium kann daher bei der Aufarbeitung von Pechblende gewonnen werden (1000 Tonnen Uranpechblende enthalten etwa 0,03 Gramm Polonium).

85 Astat

Bearbeiten

85. Astat [asˈtaːt] (von griech. άστατος: „unbeständig, wacklig“) ist ein radioaktives chemisches Element mit dem Elementsymbol At und der Ordnungszahl 85. Im Periodensystem steht es in der 7. Hauptgruppe und zählt damit zu den Halogenen. Astat entsteht beim natürlichen Zerfall von Uran. -- Als Dmitri Mendelejew 1869 sein Periodensystem festlegte, sagte er die Existenz einiger zu dieser Zeit noch nicht entdeckter Elemente voraus, darunter eines, das den Platz unter Iod einnehmen würde. In der Folge versuchten einige Wissenschaftler dieses Element, das als „Eka-Iod“ bezeichnet wurde, zu finden. -- Bestätigt werden konnte die Entdeckung des Astat (altgriechisch ἀστατέω = „unbeständig sein“, aufgrund des radioaktiven Zerfalls) erstmals im Jahre 1940 durch die Wissenschaftler Dale Corson, Kenneth MacKenzie und Emilio Gino Segrè, die es in der University of California künstlich durch Beschuss von Bismut mit Alphateilchen herstellten.

86 Radon

Bearbeiten

86. Radon (wie Radium von lat. radius „Strahl“, wegen seiner Radioaktivität) ist ein radioaktives chemisches Element mit dem Elementsymbol Rn und der Ordnungszahl 86. Im Periodensystem steht es in der 8. Hauptgruppe und zählt damit zu den Edelgasen. -- Alle Isotope des Radons sind radioaktiv. Das stabilste Isotop ist 222Rn mit einer Halbwertzeit von 3,8 Tagen; es entsteht als Zerfallsprodukt aus Radium. Zwei andere natürliche Isotope, 220Rn und 219Rn, tragen die historischen Namen Thoron (Tn) bzw. Actinon (An). Daneben hat Radon noch zwei weitere natürliche Isotope, die aus verschiedenen Gründen praktisch in der Erdatmosphäre nicht vorkommen. Da sich die drei relativ häufigen Isotope von Radon in Häusern (im Gegensatz zur natürlichen Umgebung) in schlecht belüfteten Räumen ansammeln können, stellen sie eine Gefahr für die Gesundheit und eine erhebliche Radonbelastung dar. Weil sie allerdings Edelgase sind und damit bindungsträge, ist der Gefahrenherd letztlich nicht das Radon selbst, sondern seine Zerfallsprodukte (Tochternuklide). Radon hat am gesamten Strahlungsaufkommen auf der Erdoberfläche den bei weitem größten Anteil.

87 Francium

Bearbeiten

87. Francium [ˈfrantsiʊm] ist ein radioaktives chemisches Element mit dem Elementsymbol Fr und der Ordnungszahl 87. Das Element ist ein Metall und steht in der 7. Periode, s-Block. -- Francium besitzt von allen Elementen bis zur Ordnungszahl 104 die instabilsten Isotope. Selbst das langlebigste Francium-Isotop 223Fr besitzt eine Halbwertszeit von nur 21,8 Minuten. -- Fehlens einer effizienten Kernreaktion zur Herstellung von Francium. -- Experimente zeigen, dass Francium ein typisches Alkalimetall ist und seinem leichteren Homologon Caesium sehr ähnlich ist. -- Im Jahre 1871 wurde von Dmitri Iwanowitsch Mendelejew die Existenz eines Elementes vorhergesagt, das den zu diesem Zeitpunkt noch leeren Platz innerhalb seines Periodensystem einnehmen würde. Er beschrieb es als Alkalimetall und gab ihm den Namen Eka-Caesium. -- Erst 1939 konnte Marguerite Perey das Element als ein Isotop 223Fr als Zerfallsprodukt von Actinium 227Ac zweifelsfrei nachweisen. Es wurde zunächst Actinium-K genannt und 1946 in Francium (von franz. France „Frankreich“, dem Vaterland der Entdeckerin) umbenannt. Der Name wurde 1949 von der Internationalen Vereinigung der Chemiker akzeptiert.

88 Radium

Bearbeiten

88. Radium (lateinisch radius ‚Strahl‘, wegen seiner Radioaktivität, wie auch Radon) ist ein chemisches Element mit dem Elementsymbol Ra und der Ordnungszahl 88. Im Periodensystem steht es in der 2. Hauptgruppe und zählt damit zu den Erdalkalimetallen. -- Radium wurde am 21. Dezember 1898 in Frankreich von der polnischen Physikerin Marie Curie und ihrem Ehemann, dem französischen Physiker Pierre Curie, in der Joachimsthaler Pechblende entdeckt. Wegweisend war dabei der Befund, dass gereinigtes Uran (als Metallsalz) nur einen geringen Bruchteil der Radioaktivität des ursprünglichen Uranerzes aufwies. Stattdessen fand sich der größte Teil der Radioaktivität des Erzes in der Bariumsulfat-Fällung wieder. Für das abgetrennte Element wurde dann die ausgeprägte Strahlungseigenschaft zur Namensgebung herangezogen.

89 Actinium

Bearbeiten

89. Actinium (latinisiert von griechisch ακτίνα, aktína „Strahl“) ist ein radioaktives chemisches Element mit dem Elementsymbol Ac und der Ordnungszahl 89. Das Element ist ein Metall und gehört zur 7. Periode, d-Block. Es ist der Namensgeber der Gruppe der Actinoide, der ihm folgenden 14 Elemente.

90 Thorium

Bearbeiten

90. Thorium (nach dem germanischen Gott Thor) ist ein chemisches Element mit dem Elementsymbol Th und der Ordnungszahl 90. Im Periodensystem steht es in der Gruppe der Actinoide (7. Periode, f-Block). -- Thorium selbst ist nicht spaltbar. Ähnlich wie aus Uran-238 spaltbares Plutonium erbrütet werden kann, kann aus Thorium in Kernkraftwerken jedoch spaltbares Uran-233 erbrütet werden. -- Hans Morten Thrane Esmark fand 1828 auf der norwegischen Insel Løvøya (Løvø), in der Nähe der Ortschaft Brevik im Langesundfjord ein schwarzes Mineral. Er übergab diese Probe seinem Vater Jens Esmark, einem führenden norwegischen Professor für Geologie. Esmark konnte diese Probe keinem bisher bekannten Mineral zuordnen und sandte die Probe, in der er eine unbekannte Substanz vermutete, an den schwedischen Chemiker Jöns Jakob Berzelius. Der stellte dann im gleichen Jahr fest, dass dieses Mineral (Thorit) zu nahezu 60 % aus einem neuen Oxid (Thoriumdioxid) bestand. Das dem Oxid zugrunde liegende Metall benannte er nach dem Gott Thor Thorium. -- Thor im Norden oder Donar bei den kontinentalen germanischen Völkern ist „der Donnerer“ (Nomina Agentis), ursprünglich als Gattungsname „der Donner“ (Appellativum) (as. Thunaer, ags. þunor, ahd. Donar, an. Þórr von urn. þunraR „donnern“).[1] Daraus erschließt sich der gemeingermanische Gottesname *Þunaraz.[2] Thor/Donar fungierte für die zur See fahrenden Völker als wichtiger Gewitter- und Wettergott sowie in weiterer Funktion innerhalb der bäuerlichen germanischen Gesellschaft als Vegetationsgottheit.

91 Protactinium

Bearbeiten

91. Protactinium ist ein chemisches Element mit dem Elementsymbol Pa und der Ordnungszahl 91. Im Periodensystem steht es in der Gruppe der Actinoide (7. Periode, f-Block). Es ist silbrig metallisch und wird supraleitend unterhalb von 1,4 K. -- 234mPa wurde 1913 von Kasimir Fajans und Oswald Helmuth Göhring entdeckt, sie gaben ihm wegen seiner kurzen Halbwertszeit (1,17 Minuten) den Namen Brevium (lat. brevis „kurz“). Das langlebige 231Pa (ca. 32.000 Jahre) wurde 1918 von Otto Hahn und Lise Meitner gefunden, sie nannten es Protoactinium (das chemische Element, das in der Zerfallsreihe des Uran-235 vor dem Actinium steht). -- Im Jahre 1922 machte Otto Hahn die weitere Entdeckung, dass es zu dem von Fajans gefundenen Brevium 234 noch ein zweites betastrahlendes Isotop mit der gleichen Massenzahl 234 gibt, das sich von dem Brevium lediglich durch seine längere Halbwertszeit von 6,7 Stunden unterscheidet; es handelt sich hierbei um den seltenen Fall einer Kernisomerie. -- Der offizielle Name für alle drei Isotope sowie alle künstlich herstellbaren Isotope mit der Ordnungszahl 91 wurde 1949 von der IUPAC zu Protactinium bestimmt, statt des schwerer auszusprechenden Protoactinium von Hahn/Meitner. -- Protactinium, ein radioaktives Zerfallsprodukt des Urans, findet sich in der Natur in Form der beiden Isotope 231Pa und 234Pa, wobei das Isotop 234Pa in zwei unterschiedlichen Energiezuständen auftreten kann.

92. Uran (benannt nach dem Planeten Uranus und somit nach dem griechischen Himmelsgott Uranos) ist ein chemisches Element mit dem Elementsymbol U und der Ordnungszahl 92. Im Periodensystem steht es in der Gruppe der Actinoide (7. Periode, f-Block). Uran ist ein Metall, von dem sämtliche Isotope radioaktiv sind. -- Uran wurde 1789 von Martin Heinrich Klaproth aus dem Mineral Pechblende isoliert. Seine Radioaktivität wurde 1896 von Henri Becquerel entdeckt. Eine besondere Bedeutung erhielt Uran erst nach der Entdeckung der Kernspaltung im Jahre 1938: Das Uranisotop 235U ist durch thermische Neutronen spaltbar, es ist die einzige bekannte natürlich vorkommende Substanz, die zu einer Kernspaltungs-Kettenreaktion fähig ist. Deshalb wird es in Kernkraftwerken und Kernwaffen als Primärenergieträger genutzt und hat eine große wirtschaftliche Bedeutung erlangt.

93 Neptunium

Bearbeiten

93. Neptunium ist ein chemisches Element mit dem Elementsymbol Np und der Ordnungszahl 93. Im Periodensystem steht es in der Gruppe der Actinoide (7. Periode, f-Block). Neptunium ist das erste der sogenannten Transurane, die auf der Erde, bis auf Spuren von Plutonium, nicht mehr natürlich vorkommen. Neptunium ist ein giftiges und radioaktives Schwermetall. Es wurde benannt nach dem Planeten Neptun, der auf den Planeten Uranus folgt. Neptunium folgt im Periodensystem auf Uran, dann folgt Plutonium. -- Im Mai 1934 äußerte sich Ida Noddack zu den damals bestehenden Lücken im Periodensystem der Elemente und stellte am Ende ihrer Arbeit Überlegungen über die Möglichkeit von Transuranen an.

94 Plutonium

Bearbeiten

94. Plutonium ist ein chemisches Element mit dem Elementsymbol Pu und der Ordnungszahl 94. Im Periodensystem steht es in der Gruppe der Actinoide (7. Periode, f-Block) und zählt zu den Transuranen. Plutonium ist ein giftiges und radioaktives Schwermetall. Benannt wurde es nach dem Zwergplaneten Pluto. Es gehört zu den schwersten in der Natur vorkommenden Elementen. Dabei wird das Element aber nur in kleinsten Spuren in sehr alten Gesteinen gefunden. Größer ist die Menge, die künstlich in Kernkraftwerken erzeugt wird. -- Als eines der wenigen spaltbaren Elemente spielt es eine wichtige Rolle für den Betrieb von Kernkraftwerken und den Bau von Kernwaffen. So war das Spaltmaterial der Atombombe, die am 9. August 1945 auf Nagasaki abgeworfen wurde, Plutonium.

95 Americium

Bearbeiten

95. Americium ist ein chemisches Element mit dem Elementsymbol Am und der Ordnungszahl 95. Im Periodensystem steht es in der Gruppe der Actinoide (7. Periode, f-Block) und zählt auch zu den Transuranen. Americium ist neben Europium das einzige nach einem Erdteil benannte Element. Es ist ein leicht verformbares radioaktives Metall silbrig-weißen Aussehens. -- Von Americium gibt es kein stabiles Isotop. Auf der Erde kommt es ausschließlich in künstlich erzeugter Form vor. Das Element wurde erstmals im Spätherbst 1944 erzeugt, die Entdeckung jedoch zunächst nicht veröffentlicht. Kurioserweise wurde dessen Existenz in einer amerikanischen Radiosendung für Kinder durch den Entdecker Glenn T. Seaborg, den Gast der Sendung, der Öffentlichkeit preisgegeben. -- Americium wird in Kernreaktoren gebildet, eine Tonne abgebrannten Kernbrennstoffs enthält durchschnittlich etwa 100 g des Elements.

96 Curium

Bearbeiten

96. Curium ist ein künstlich erzeugtes chemisches Element mit dem Elementsymbol Cm und der Ordnungszahl 96. Im Periodensystem steht es in der Gruppe der Actinoide (7. Periode, f-Block) und zählt zu den Transuranen. Curium wurde nach den Forschern Marie Curie und Pierre Curie benannt. -- Bei Curium handelt es sich um ein radioaktives, silbrig-weißes Metall großer Härte. Es wird in Kernreaktoren gebildet, eine Tonne abgebrannten Kernbrennstoffs enthält durchschnittlich etwa 20 g. -- Curium wurde im Sommer 1944 erstmals aus dem leichteren Element Plutonium erzeugt, die Entdeckung wurde zunächst nicht veröffentlicht. Erst in einer amerikanischen Radiosendung für Kinder wurde durch den Entdecker Glenn T. Seaborg als Gast der Sendung die Existenz der Öffentlichkeit preisgegeben, indem er die Frage eines jungen Zuhörers bejahte, ob neue Elemente entdeckt worden seien. -- Curium ist ein starker α-Strahler; es wird gelegentlich aufgrund der sehr großen Wärmeentwicklung während des Zerfalls in Radionuklidbatterien eingesetzt. -- Curium wurde im Sommer 1944 von Glenn T. Seaborg und seinen Mitarbeitern Ralph A. James und Albert Ghiorso entdeckt. In ihren Versuchsreihen benutzten sie ein 60-Inch-Cyclotron an der Universität von Kalifornien in Berkeley. Nach Neptunium und Plutonium war es das dritte seit dem Jahr 1940 entdeckte Transuran. Seine Erzeugung gelang noch vor der des in der Ordnungszahl um einen Platz tiefer stehenden Elements Americium.

97 Berkelium

Bearbeiten

97. Berkelium ist ein künstlich erzeugtes chemisches Element mit dem Elementsymbol Bk und der Ordnungszahl 97. Im Periodensystem steht es in der Gruppe der Actinoide (7. Periode, f-Block) und zählt auch zu den Transuranen. Berkelium wurde nach der Stadt Berkeley in Kalifornien benannt, in der es entdeckt wurde. Bei Berkelium handelt es sich um ein radioaktives Metall mit einem silbrig-weißen Aussehen. Es wurde im Dezember 1949 erstmals aus dem leichteren Element Americium erzeugt. Es entsteht in geringen Mengen in Kernreaktoren. Seine Anwendung findet es vor allem zur Erzeugung höherer Transurane und Transactinoide. -- So wie Americium (Ordnungszahl 95) und Curium (96) in den Jahren 1944 und 1945 nahezu zeitgleich entdeckt wurden, erfolgte in ähnlicher Weise in den Jahren 1949 und 1950 die Entdeckung der Elemente Berkelium (97) und Californium (98). -- Die Experimentatoren, Glenn T. Seaborg, Albert Ghiorso und Stanley G. Thompson, stellten am 19. Dezember 1949 die ersten Kerne im 60-Inch-Cyclotron der Universität von Kalifornien in Berkeley her. Es war das fünfte Transuran, das entdeckt wurde. Die Entdeckung wurde zeitgleich mit der des Californiums veröffentlicht. -- Die Namenswahl folgte naheliegenderweise einem gemeinsamen Ursprung: Berkelium wurde nach dem Fundort, der Stadt Berkeley in Kalifornien, benannt. Die Namensgebung folgt somit wie bei vielen Actinoiden und den Lanthanoiden: Terbium, das im Periodensystem genau über Berkelium steht, wurde nach der schwedischen Stadt Ytterby benannt, in der es zuerst entdeckt wurde: It is suggested that element 97 be given the name berkelium (symbol Bk) after the city of Berkeley in a manner similar to that used in naming its chemical homologue terbium (atomic number 65) whose name was derived from the town of Ytterby, Sweden, where the rare earth minerals were first found. Für das Element 98 wählte man den Namen Californium zu Ehren der Universität und des Staates Kalifornien.

98 Californium

Bearbeiten

98. Californium (selten auch Kalifornium geschrieben) ist ein künstlich erzeugtes chemisches Element mit dem Elementsymbol Cf und der Ordnungszahl 98. Im Periodensystem steht es in der Gruppe der Actinoide (7. Periode, f-Block) und zählt auch zu den Transuranen. Benannt wurde es nach der Universität von Kalifornien und dem US-amerikanischen Bundesstaat Kalifornien, wo es entdeckt wurde. Bei Californium handelt es sich um ein radioaktives Metall. Es wurde im Februar 1950 erstmals aus dem leichteren Element Curium erzeugt. Es entsteht in geringen Mengen in Kernreaktoren. Seine Anwendung findet es vor allem für mobile und tragbare Neutronenquellen aber auch zur Erzeugung höherer Transurane und Transactinoide. -- Californium wurde zum ersten Mal am 9. Februar 1950 an der Universität von Californien in Berkeley von Stanley G. Thompson, Kenneth Street, Jr., Albert Ghiorso und Glenn T. Seaborg erzeugt, indem sie Atomkerne des Curiums mit α-Teilchen beschossen. Es war das sechste Transuran, das entdeckt wurde. Die Entdeckung wurde gleichzeitig mit der des Berkeliums veröffentlicht. -- Die Namenswahl für beide Elemente folgte demselben Muster: Während Berkelium zu Ehren der Universität von Berkeley seinen Namen erhielt, wählte man für das Element 98 den Namen Californium zu Ehren der Universität und des Staates Kalifornien.

99 Einsteinium

Bearbeiten

99. Einsteinium ist ein ausschließlich künstlich erzeugtes chemisches Element mit dem Elementsymbol Es und der Ordnungszahl 99. Im Periodensystem steht es in der Gruppe der Actinoide (7. Periode, f-Block) und zählt auch zu den Transuranen. Einsteinium ist ein radioaktives Metall, welches in gerade noch wägbaren Mengen herstellbar ist. Es wurde 1952 nach dem Test der ersten amerikanischen Wasserstoffbombe entdeckt und Albert Einstein zu Ehren benannt, der jedoch persönlich mit der Entdeckung von bzw. Forschung an Einsteinium nichts zu tun hatte. Es entsteht in geringen Mengen in Kernreaktoren. Das Metall wie auch seine Verbindungen werden in geringen Mengen in erster Linie zu Studienzwecken gewonnen. -- Einsteinium wurde zusammen mit Fermium nach dem Test der ersten amerikanischen Wasserstoffbombe, Ivy Mike, am 1. November 1952 auf dem Eniwetok-Atoll gefunden. Erste Proben erhielt man auf Filterpapieren, die man beim Durchfliegen durch die Explosionswolke mitführte. Größere Mengen isolierte man später aus Korallen. Aus Gründen der militärischen Geheimhaltung wurden die Ergebnisse zunächst nicht publiziert. -- Eine erste Untersuchung der Explosionsüberreste hatte die Entstehung eines neuen Plutoniumisotops 244Pu aufgezeigt, dies konnte nur durch die Aufnahme von sechs Neutronen durch einen Uran-238-Kern und zwei folgende β-Zerfälle entstanden sein.

100 Fermium

Bearbeiten

100. Fermium ist ein ausschließlich künstlich erzeugtes chemisches Element mit dem Elementsymbol Fm und der Ordnungszahl 100. Im Periodensystem steht es in der Gruppe der Actinoide (7. Periode, f-Block) und zählt auch zu den Transuranen. Fermium ist ein radioaktives Metall, welches aber aufgrund der geringen zur Verfügung stehenden Mengen bisher nicht als Metall dargestellt wurde. Es wurde 1952 nach dem Test der ersten amerikanischen Wasserstoffbombe entdeckt und Enrico Fermi zu Ehren benannt, der jedoch persönlich mit der Entdeckung von bzw. Forschung an Fermium nichts zu tun hatte. -- Enrico Fermi (* 29. September 1901 in Rom, Italien; † 28. November 1954 in Chicago, USA), war einer der bedeutendsten Kernphysiker des 20. Jahrhunderts. 1938 erhielt er den Nobelpreis für Physik. -- Fermium wurde zusammen mit Einsteinium nach dem Test der ersten amerikanischen Wasserstoffbombe, Ivy Mike, am 1. November 1952 auf dem Eniwetok-Atoll gefunden. Erste Proben erhielt man auf Filterpapieren, die man beim Durchfliegen durch die Explosionswolke mitführte. Größere Mengen isolierte man später aus Korallen. Aus Gründen der militärischen Geheimhaltung wurden die Ergebnisse zunächst nicht publiziert.

101 Mendelevium

Bearbeiten

101. Mendelevium ist ein ausschließlich künstlich erzeugtes chemisches Element mit dem Elementsymbol Md und der Ordnungszahl 101. Im Periodensystem steht es in der Gruppe der Actinoide (7. Periode, f-Block) und zählt auch zu den Transuranen. Mendelevium ist ein radioaktives Metall, welches aber aufgrund der geringen zur Verfügung stehenden Mengen bisher nicht als Metall dargestellt wurde. Es wurde 1955 entdeckt und nach dem russischen Chemiker und Erfinder des Periodensystems Dmitri Mendelejew benannt. Der Name wurde 1994 endgültig von der IUPAC bestätigt. -- Mendelevium wurde 1955 zum ersten Mal an der University of California in Berkeley von Stanley G. Thompson, Albert Ghiorso, Bernard G. Harvey, Gregory Choppin und Glenn T. Seaborg erzeugt. Die Entdecker schlugen dabei den Namen zu Ehren Mendelejews vor, ebenso das Kürzel Mv. Die IUPAC entschied sich für den Namen, jedoch mit dem Symbol Md.

102 Nobelium

Bearbeiten

102. Nobelium ist ein ausschließlich künstlich erzeugtes chemisches Element mit dem Elementsymbol No und der Ordnungszahl 102. Im Periodensystem steht es in der Gruppe der Actinoide (7. Periode, f-Block) und zählt auch zu den Transuranen. Nobelium ist ein radioaktives Metall, welches aber aufgrund der geringen zur Verfügung stehenden Mengen bisher nicht als Metall dargestellt wurde. Es wurde 1957 entdeckt und Alfred Nobel zu Ehren benannt. Der Name wurde 1994 endgültig von der IUPAC bestätigt.

103 Lawrencium

Bearbeiten

103. Lawrencium ist ein ausschließlich künstlich erzeugtes chemisches Element mit dem Elementsymbol Lr und der Ordnungszahl 103. Im Periodensystem steht es in der Gruppe der Actinoide (7. Periode, f-Block) und zählt auch zu den Transuranen. Lawrencium ist ein radioaktives Metall, welches aber aufgrund der geringen zur Verfügung stehenden Mengen bisher nicht als Metall dargestellt wurde. Es wurde 1961 entdeckt, als man Californium mit Bor-Kernen beschoss. Dieses Element wurde nach Ernest Lawrence benannt. Er ist der Erfinder des Zyklotrons, eines Teilchenbeschleunigers, der eine wichtige Voraussetzung zur Entdeckung vieler Transuran-Elemente war.

104 Rutherfordium

Bearbeiten

104. Rutherfordium ist ein ausschließlich künstlich erzeugtes chemisches Element mit dem Elementsymbol Rf und der Ordnungszahl 104. Es zählt zu den Transactinoiden. Alle zehn bekannten Isotope des Rutherfordiums sind radioaktiv. -- Über eine erste Synthese des Elementes wurde 1964 seitens des Kernforschungszentrums bei Dubna (Sowjetunion) berichtet. Sie beschossen Plutonium mit Neonkernen.

105 Dubnium

Bearbeiten

105. Dubnium (in der Physik auch oft Hahnium) ist ein ausschließlich künstlich erzeugtes chemisches Element mit dem Elementsymbol Db und der Ordnungszahl 105. Es zählt zu den Transactinoiden. Alle Dubnium-Isotope sind radioaktiv. -- Entdeckt wurde Dubnium 1967 von G. N. Flerow et al. am Kernforschungsinstitut bei Dubna bzw. von Albert Ghiorso et al. an der Universität von Kalifornien, Berkeley. Wie alle Transactinoide wird Dubnium ausschließlich durch Teilchenbeschuss künstlich hergestellt.

106 Seaborgium

Bearbeiten

106. Seaborgium („Eka-Wolfram“) ist ein ausschließlich künstlich erzeugtes chemisches Element mit dem Elementsymbol Sg und der Ordnungszahl 106. Es zählt zu den Transactinoiden (7. Periode, d-Block). Alle Seaborgium-Isotope sind radioaktiv. Es wurde erstmals 1974 erzeugt, etwa gleichzeitig im Kernforschungszentrum Dubna (Sowjetunion) und an der Universität von Kalifornien, Berkeley. -- Nachdem es zunächst den Namen Unnilhexium (Symbol Unh) trug, erhielt es 1997 nach der Elementnamensgebungskontroverse den aktuellen Namen, der ihm zu Ehren des amerikanischen Chemikers Glenn T. Seaborg gegeben wurde. Seaborgium ist das einzige Element, das nach einem Wissenschaftler noch zu dessen Lebzeiten benannt wurde. Glenn T. Seaborg starb am 25. Februar 1999.

118 Oganesson

Bearbeiten

118. Oganesson (Ununoctium, lat. unus, „eins“, und lat. octo, „acht“, entsprechend der Ordnungszahl 118) ist das bisher schwerste bekannte chemische Element. Der Name ist ein systematischer Elementname. Es wird auch als Eka-Radon (sanskr. eka, „eins“, und Radon, also „eins unter Radon“) mit dem Symbol Eka-Rn bezeichnet.