Subharmonische Funktion

Funktionsklasse mit bestimmten Eigenschaften

In der Mathematik bezeichnen subharmonische und superharmonische Funktionen wichtige Klassen von Funktionen, die ihre Anwendungen in der Theorie Partieller Differentialgleichungen, Funktionentheorie und Potentialtheorie haben.

Subharmonische Funktionen sind zu konvexen Funktionen einer Variable folgendermaßen verbunden: Wenn der Graph einer konvexen Funktion und eine Gerade sich an zwei Punkten schneiden, ist der Graph der konvexen Funktion unter der Geraden zwischen diesen beiden Punkten. Auf die gleiche Art sind die Werte einer subharmonischen Funktion im Inneren einer Kugel nicht größer als die einer harmonischen Funktion, wenn dies für den Rand der Kugel gilt. Durch diese Eigenschaften können subharmonische Funktionen definiert werden.

Superharmonische Funktionen können auf die gleiche Art definiert werden, wobei "nicht größer" durch "nicht kleiner" ersetzt wird. Alternativ kann eine Funktion als superharmonisch definiert werden, wenn subharmonisch ist. Daher kann jede Eigenschaft subharmonischer Funktionen leicht auf superharmonische Funktionen übertragen werden.

Formale Definition Bearbeiten

Sei   eine Teilmenge des Euklidischen Raums   und sei

 

eine oberhalbstetige Funktion. Dann ist   subharmonisch, falls für jede abgeschlossene Kugel   mit Mittelpunkt   und Radius   aus   und für jede reellwertige, stetige Funktion   auf  , die harmonisch in   ist und   für alle   auf dem Rand   von   erfüllt, stets   für alle   gilt.

Damit ist auch die Funktion, die identisch   ist, subharmonisch. Allerdings schließen manche Autoren diesen Fall per Definition aus.

Eigenschaften Bearbeiten

  • Eine oberhalbstetige Funktion   ist genau dann subharmonisch, wenn für jedes   mit   gilt
 
wobei   das Oberflächenmaß bezeichnet. Dies bedeutet, dass eine subharmonische Funktion an keinem Punkt größer als das arithmetische Mittel ihrer Werte auf einem Kreis um diesen Punkt ist.
  • Das Maximum einer subharmonischen Funktion kann nicht im Inneren ihres Definitionsbereichs angenommen werden, falls die Funktion nicht konstant ist. Dies ist das sogenannte Maximumprinzip, das unmittelbar aus der vorangehenden Eigenschaft folgt.
  • Eine Funktion ist genau dann harmonisch, wenn sie sowohl subharmonisch als auch superharmonisch ist.
  • Wenn   zweimal stetig differenzierbar auf einer offenen Menge   aus   ist, dann ist   subharmonisch genau dann, wenn
  in   gilt,
wobei   den Laplace-Operator bezeichnet.

Subharmonische Funktionen in der komplexen Zahlenebene Bearbeiten

Subharmonische Funktionen sind in der Funktionentheorie vom besonderen Interesse, da sie eng mit holomorphen Funktionen verbunden sind.

Eine reellwertige, stetige Funktion   einer komplexen Variablen (d. h. von zwei reellen Variablen), die auf einer offenen Menge   definiert ist, ist genau dann subharmonisch, wenn für jede abgeschlossene Kreisscheibe   mit Mittelpunkt   und Radius   gilt

 

Falls   eine holomorphe Funktion ist, dann ist

 

subharmonisch, wenn man   an den Nullstellen auf −∞ setzt.

In der komplexen Zahlenebene kann die Verbindung zu den konvexen Funktionen auch durch den Fakt begründet werden, dass eine subharmonische Funktion   auf einem Gebiet  , die konstant in Richtung der Imaginärachse ist, konvex in Richtung der reellen Achse ist, und andersherum.

Stochastik Bearbeiten

In der Markov-Theorie werden superharmonische Funktionen verwendet. Ist   der Übergangsoperator, so ist eine Funktion   superharmonisch genau dann, wenn  . Statt superharmonisch wird auch der Begriff exzessiv benutzt.

Die kleinste superharmonische bzw. exzessive Funktion, die die Auszahlungsfunktion majorisiert, ist der Wert des Spiels.

Quellen Bearbeiten

  • John B. Conway: Functions of One Complex Variable. 1. Band 2. edition. Springer-Verlag, New York NY u. a. 1978, ISBN 0-387-90328-3 (Graduate Texts in Mathematics 11).
  • Joseph L. Doob: Classical Potential Theory and Its Probabilistic Counterpart. Springer-Verlag, New York NY u. a. 1984, ISBN 3-540-90881-1 (Grundlehren der mathematischen Wissenschaften 262).
  • Steven G. Krantz: Function Theory of Several Complex Variables. 2. edition, reprinted with corrections. AMS Chelsea Publishing, Providence RI 2001, ISBN 0-8218-2724-3.