In der Mathematik, insbesondere in Differentialgeometrie und Topologie sind straffe Blätterungen (engl.: taut foliations) Blätterungen, die sich durch Minimalflächen einer geeigneten Riemannschen Metrik realisieren lassen.

Definition Bearbeiten

Sei   eine Mannigfaltigkeit. Eine Blätterung der Kodimension 1 heißt straff, wenn es zu jedem Blatt   eine Abbildung   gibt, deren Bild   transversal schneidet.

Realisierbarkeit durch Minimalflächen Bearbeiten

Sei   eine geschlossene, orientierte, differenzierbare Mannigfaltigkeit. Nach einem Satz von Rummler und Sullivan[1] sind die folgenden Bedingungen an eine transversal orientierbare Kodimension 1-Blätterung   äquivalent:

  •   ist straff
  • es gibt einen zu   transversalen Fluss, der eine Volumenform invariant lässt
  • es gibt eine Riemannsche Metrik auf  , in der die Blätter von   Flächen kleinster Fläche sind.

Blätterungen ohne Reebkomponenten Bearbeiten

Wenn eine Blätterung straff ist, kann es keine Reeb-Komponente, d. h. keine Teilmenge diffeomorph zu einer Reeb-Blätterung, geben. Für atoroidale 3-Mannigfaltigkeiten gilt auch die Umkehrung: jede Blätterung ohne Reeb-Komponenten ist straff.

Straffe Blätterungen von 3-Mannigfaltigkeiten Bearbeiten

Für straffe Blätterungen von 3-Mannigfaltigkeiten gibt es eine gut ausgearbeitete Strukturtheorie. Zunächst können nach dem Satz von Novikov-Zieschang auf einer geschlossenen, orientierbaren 3-Mannigfaltigkeit straffe Blätterungen nur dann existieren, wenn   oder  , und es müssen dann notwendigerweise alle Blätter inkompressibel sein.[2] Eine hinreichende Bedingung für die Existenz straffer Blätterungen liefert der Satz von Gabai: Sei M eine geschlossene, irreduzible 3-Mannigfaltigkeit mit  , dann gibt es auf M eine straffe Blätterung. Man kann sogar jedes nichttriviale Element von   als Blatt einer straffen Blätterung realisieren.[3] Gabais Beweis benutzt genarbte Mannigfaltigkeitshierarchien.

Einen Zugang zur Struktur straffer Blätterungen auf 3-Mannigfaltigkeiten liefert der Satz von Palmeira: Wenn es auf einer geschlossenen, orientierbaren 3-Mannigfaltigkeit   eine straffe Blätterung gibt, dann ist die universelle Überlagerung   diffeomorph zum   und die hochgehobene Blätterung ist eine Blätterung des   durch Blätter diffeomorph zum  .[4] Der Raum der Blätter (der hochgehobenen Blätterung) ist in diesem Fall eine (i.a. nicht-Hausdorffsche) 1-Mannigfaltigkeit und die straffe Blätterung wird also beschrieben durch eine Wirkung von   auf einer 1-Mannigfaltigkeit.

L-Räume haben keine straffen Blätterungen.

Weblinks Bearbeiten

Belege Bearbeiten

  1. Sullivan, Dennis A homological characterization of foliations consisting of minimal surfaces. Comment. Math. Helv. 54 (1979), no. 2, 218–223, doi:10.1007/BF02566269.
  2. Novikov, S. P.: Топология слоений. Тр. Моск. мат. о-ва. 14 1965. 248—278.
  3. Gabai, David: Foliations and the topology of 3-manifolds. J. Differential Geom. 18 (1983), no. 3, 445–503. online (pdf)
  4. Palmeira, Carlos Frederico Borges: Open manifolds foliated by planes. Ann. Math. (2) 107 (1978), no. 1, 109–131. online (pdf)