In der Quantenmechanik bezeichnet man den Zustand eines zusammengesetzten Systems als separabel, wenn er nicht verschränkt ist, das heißt, wenn er sich als Gemisch aus Produktzuständen schreiben lässt.

Separabilität für reine Zustände Bearbeiten

Der Einfachheit halber werden im Folgenden alle Räume als endlichdimensional angenommen. Zunächst betrachten wir reine Zustände.

Separabilität ist eine Eigenschaft zusammengesetzter Quantensysteme, das heißt im einfachsten („bipartiten“) Fall, eines aus den Teilsystemen 1 und 2 bestehenden Gesamtsystems 12. Die quantenmechanischen Zustandsräume der Teilsysteme seien die Hilberträume   und   mit den jeweiligen orthonormalen Basisvektoren   und  . Der Hilbertraum des zusammengesetzten Systems ist dann das Tensorprodukt

 

mit der Basis  , oder in kompakterer Notation  . Jeder Vektor in   (d. h., jeder reine Zustand des Systems 12) lässt sich schreiben als  .

Wenn sich ein reiner Zustand   in der Form   schreiben lässt (wobei   ein reiner Zustand des Teilsystems   ist), heißt er separabel oder Produktzustand. Andernfalls nennt man den Zustand verschränkt.

Standardbeispiele für einen separablen und einen verschränkten Zustandsvektor in   sind

        bzw.        

wobei   wie üblich zu lesen ist als: „wird repräsentiert durch“.

Man sieht,

  • dass man in einem reinen separablen Zustand jedem Teilsystem einen „eigenen“ Zustand zuweisen kann.
  • dass sich jeder reine separable Zustand durch lokale quantenmechanisch zulässige Operationen aus jedem anderen Zustand (z. B. aus  ) erzeugen lässt.

Beides ist in einem verschränkten Zustand nicht möglich. Passend verallgemeinert lässt sich diese Unterscheidung auch auf den Fall gemischter Zustände übertragen.

Die vorangehende Diskussion lässt sich ohne wesentliche Änderungen auf den Fall unendlichdimensionaler Systeme verallgemeinern.

Separabilität für gemischte Zustände Bearbeiten

Nun betrachten wir den Fall gemischter Zustände. Ein gemischter Zustand des zusammengesetzten Quantensystems 12 wird durch eine Dichtematrix   beschrieben, die auf dem Hilbertraum   wirkt.

  ist separabel, wenn es   mit   und Zustände   auf   und   auf   gibt (die jeweils gemischte Zustände der Teilsysteme beschreiben), so dass

 

Andernfalls heißt   verschränkt.

Die physikalische Bedeutung dieser mathematischen Definition ist, dass sich ein separabler Zustand als Gemisch von Produktzuständen   auffassen lässt.

  • Dies impliziert zum einen, dass ein separabler Zustand nur klassische Korrelationen zwischen den Teilsystemen beschreibt. (Denn ein Produktzustand beschreibt unabhängige (unkorrelierte) Systeme und die Korrelationen sind durch die klassische Wahrscheinlichkeitsverteilung   gegeben.)
  • Zum anderen folgt, dass sich ein separabler Zustand mittels lokaler quantenmechanisch erlaubter Operationen und klassischer Kommunikation aus jedem anderen Zustand (z. B. aus  ) erzeugen lässt. (Mittels klassischer Kommunikation wählen beide Parteien einen Index   gemäß der Wahrscheinlichkeitsverteilung   aus und erzeugen dann (was jeweils lokal möglich ist) den Produktzustand  .)

Es ist nach der obigen Definition klar, dass die separablen Zustände eine konvexe Menge bilden.

Wenn die Zustandsräume unendlichdimensional sind, werden Dichtematrizen durch positive Spurklasseoperatoren mit Spur 1 ersetzt. Ein Zustand heißt dann separabel, wenn er (in der Spurnorm) durch Zustände der obigen Form beliebig genau approximiert werden kann.

Separabilität für Vielparteien-Systeme Bearbeiten

Die vorangehende Diskussion lässt sich leicht für aus vielen Teilsystemen bestehende Quantensysteme verallgemeinern. Wenn das System aus   Teilsystemen mit System-Hilbertraum   besteht, dann ist ein reiner Zustand auf   genau dann separabel (genauer: vollständig separabel), wenn er von der Form

 

ist. Analog ist ein gemischter Zustand   auf   separabel, wenn er sich als konvexe Summe von Produktzuständen schreiben lässt:

 .

Separabilitätskriterien Bearbeiten

Einfach überprüfbare Bedingungen, die alle separablen Zustände erfüllen, werden auch als Separabilitätskriterien bezeichnet (notwendige Bedingungen für Separabilität). Ihre Verletzung für einen gegebenen Zustand kann dann als Nachweis verstanden werden, dass der Zustand inseparabel, also verschränkt ist. Die Unterscheidung von separablen und verschränkten Zuständen ist in der Quanteninformationstheorie von großem Interesse, da nur verschränkte Zustände Quantenkorrelationen aufweisen und eine wichtige Ressource darstellen, die Verfahren wie Quantenteleportation oder Quantenfehlerkorrektur ermöglicht.

Ein reiner Zustand   auf   ist genau dann separabel, wenn er ein Produktzustand ist. Das kann anhand des reduzierten Zustands in einem der beiden Teilsysteme überprüft werden: für reine separable Zustände ist der reduzierte Zustand ebenfalls rein, das heißt, seine Von-Neumann-Entropie   verschwindet. Das heißt, ein reiner Zustand   ist dann und nur dann separabel, wenn   oder   ist (beide Gleichungen sind über die Schmidt-Zerlegung äquivalent).

Die Frage, ob ein gegebener gemischter Zustand   separabel ist (Separabilitätsproblem), ist im Allgemeinen schwer zu beantworten (NP-Schwere[1]). Die gebräuchlichen Separabilitätskriterien sind leicht nachzuprüfen, lösen das Problem aber nur teilweise, das heißt, sie können nicht für alle Zustände entscheiden, ob sie verschränkt sind.

Beispiele für solche Kriterien sind die Erfüllung einer Bellschen Ungleichung oder des Peres-Horodecki-Kriteriums, das besagt, dass die Dichtematrix eines separablen Zustands unter partieller Transposition[2] positiv bleibt. Allgemeiner lässt sich formulieren, dass die Dichtematrix eines separablen Zustands unter Anwendung jeder positiven Abbildung   in einem der Teilsysteme positiv bleiben muss:

 .

Im Allgemeinen (d. h. für nicht notwendig separable Zustände) gilt dies nur für vollständig positive Abbildungen  . Die Gültigkeit der obigen Ungleichung für alle positiven Abbildungen   ist notwendig und hinreichend für Separabilität.[3]

Andere Separabilitätskriterien ergeben sich aus den sogenannten Verschränkungszeugen (entanglement witnesses) oder aus Verschränkungsmaßen.

Ein allgemeiner Algorithmus zur Lösung des Separabilitätsproblems wurde 2011 vorgestellt. Er nutzt semidefinite Programmierung, um zu entscheiden, ob der gegebene Zustand   eine symmetrische Erweiterung auf N Systeme besitzt, das heißt, ob es für alle N einen Zustand   gibt, so dass der reduzierte Zustand   auf den Systemen 1" und "j" für alle j gleich dem Zustand   ist.[4] Alle separablen Zustände haben für alle N eine solche symmetrische Erweiterung. Für jeden verschränkten Zustand gibt es ein N, sodass keine solche Erweiterung existiert.[5]

Literatur Bearbeiten

  • Gernot Alber und M. Freyberger: Quantenkorrelationen und die Bellschen Ungleichungen. In: Physikalische Blätter. Band 55, Nr. 10, 1999, S. 24, doi:10.1002/phbl.19990551006.
  • Asher Peres: Quantum Theory: Concepts and Methods. Kluwer Academic, 1995, ISBN 0-7923-3632-1 (springer.com).
  • Jürgen Audretsch: Verschränkte Welt. Faszination der Quanten. Wiley-VCH, 2002.
  • Eckert et al.: Entanglement Properties of Composite Quantum Systems. In: Quantum Information Processing. Th. Beth und G. Leuchs (Hrsg.), Wiley-VCH, 2003.
  • R. Horodecki, P. Horodecki, M. Horodecki & K. Horodecki: Quantum entanglement. In: Rev. Mod. Phys. Band 81, 2009, S. 865–942, doi:10.1103/RevModPhys.81.865, arxiv:quant-ph/0702225.

Weblinks Bearbeiten

Einzelnachweise Bearbeiten

  1. L. Gurvits: Classical complexity and quantum entanglement. In: J. Comput. Syst. Sci. Band 69, 2004, S. 448–484, doi:10.1016/j.jcss.2004.06.003, arxiv:quant-ph/0201022.
  2. Als partielle Transposition einer Matrix   auf   bezeichnet man die Matrix, bei der die Transposition nur bezüglich eines der beiden Teilsysteme   gebildet wird. Seien   und   Orthonormalbasen von   bzw.   und seien   die Matrixelemente in der Basis  , dann gilt für die bezüglich   partiell transponierte Matrix  , dass  . Die lineare Abbildung   wird oft auch als partielle Transposition bezeichnet.   ist ein Beispiel für einen „positive, aber nicht vollständig positive“ Abbildung. (vgl. z. B. Horodecki et al. Phys. Lett. A 223, 1 (1996))
  3. Michał Horodecki, Paweł Horodecki, Ryszard Horodecki: Separability of mixed states: necessary and sufficient conditions. In: Physics Letters A. Band 223, 1996, S. 1–8, doi:10.1016/S0375-9601(96)00706-2, arxiv:quant-ph/9605038.
  4. F.G.L. Brandao, M. Christandl, J. Yard: A quasipolynomial-time algorithm for the quantum separability problem. In: ACM (Hrsg.): Proceedings of the 43rd annual ACM symposium on Theory of Computing. 2011, S. 343–352, doi:10.1145/1993636.1993683, arxiv:1011.2751.
  5. A.C. Doherty, P.A. Parrilo, F.M. Spedalieri: A complete family of separability criteria. In: Phys. Rev. A. Band 69, 2004, S. 022308, doi:10.1103/PhysRevA.69.022308, arxiv:quant-ph/0308032.