Lokal zusammenhängende Räume werden im mathematischen Teilgebiet der Topologie betrachtet. Es handelt sich um topologische Räume, die um jeden Punkt herum im Kleinen zusammenhängend sind.

Definitionen Bearbeiten

  • Ein topologischer Raum   heißt lokal zusammenhängend im Punkt  , wenn   eine Umgebungsbasis aus offenen und zusammenhängenden Mengen besitzt.[1]
  • Ein topologischer Raum heißt lokal zusammenhängend, wenn er in jedem seiner Punkte lokal zusammenhängend ist.[2]

Indem man die Definition der Umgebungsbasis in obige Definition einbaut, kann man dies auch wie folgt umformulieren:

  • Ein topologischer Raum   heißt lokal zusammenhängend, falls es zu jedem   und jeder offenen Menge   mit   eine offene und zusammenhängende Menge   gibt mit  .[3]

Beispiele Bearbeiten

  • Jede offene Menge   ist mit ihrer Teilraumtopologie lokal zusammenhängend, denn zu jedem   bilden die vollständig in   gelegenen Kugeln um   eine Umgebungsbasis der verlangten Art.
  • Die Vereinigung zweier oder mehrerer disjunkter, nicht-leerer Mengen im   zeigt, dass lokal zusammenhängende Räume im Allgemeinen nicht zusammenhängend sind.
  • Das Einheitsintervall, das Einheitsquadrat, allgemeiner Quader im   sind lokal zusammenhängend.
  • Diskrete Räume und Räume mit der trivialen Topologie sind lokal zusammenhängend. Im ersten Fall ist jede einpunktige Menge eine Umgebungsbasis des enthaltenen Punktes, im zweiten Fall ist der Gesamtraum eine Umgebungsbasis.
 
Topologischer Kamm
  • Der topologische Kamm   ist in den Punkten aus   nicht lokal zusammenhängend, da hinreichend kleine Kugeln um diese Punkte stets aus unendlich vielen unzusammenhängenden Strecken bestehen. Da dieser Raum zusammenhängend ist, zeigt dieses Beispiel, dass zusammenhängende Räume im Allgemeinen nicht lokal zusammenhängend sind.
  • Der Raum   mit der Teilraumtopologie von   ist in keinem Punkt lokal zusammenhängend.
  • Jeder topologische Raum   besitzt eine gröbste lokal zusammenhängende Topologie  , die feiner als   ist, nämlich
 
Es ist klar, dass die diskrete Topologie stets in der Menge, über die der Durchschnitt gebildet wird, enthalten ist. Man zeigt dann, dass dieser Durchschnitt eine lokal zusammenhängende Topologie auf   ist.[4]
Der Übergang von einem topologischen Raum zu dem so konstruierten lokal zusammenhängenden Raum ist ein Funktor, der rechtsadjungiert zum Vergissfunktor ist, der den lokalen Zusammenhang vergisst. Die Kategorie der lokal zusammenhängenden Räume ist demnach eine koreflektive Unterkategorie in der Kategorie der topologischen Räume.

Äquivalente Charakterisierungen Bearbeiten

  • Ein topologischer Raum ist genau dann lokal zusammenhängend, wenn jede Zusammenhangskomponente jeder offenen Menge offen ist.[5]
  • Ein topologischer Raum ist genau dann lokal zusammenhängend, wenn die offenen und zusammenhängenden Mengen eine Basis der Topologie bilden.[6]

Eigenschaften Bearbeiten

  • Offene Unterräume lokal zusammenhängender Räume sind wieder lokal zusammenhängend, wie sich unmittelbar aus der Definition ergibt. Beliebige Unterräume sind im Allgemeinen nicht wieder lokal zusammenhängend. So ist obiges Beispiel des topologischen Kamms ein abgeschlossener Unterraum des lokal zusammenhängenden Einheitquadrats  .
  • Quotientenräume lokal zusammenhängender Räume sind wieder lokal zusammenhängend.[7]
Im Allgemeinen sind stetige Bilder lokal zusammenhängender Räume nicht wieder lokal zusammenhängend. Es gilt aber:[8]
Ist   eine stetige, surjektive Abbildung eines kompakten, lokal zusammenhängenden Raums   auf einen Hausdorffraum  , so ist   lokal zusammenhängend.[9]
  • Endliche Produkte lokal zusammenhängender Räume sind wieder lokal zusammenhängend. Für beliebige Produkte ist das im Allgemeinen falsch. Hier gilt:
Ist   eine Familie lokal zusammenhängender Räume, so ist das Produkt   genau dann lokal zusammenhängend, wenn alle   bis auf höchstens endliche viele Ausnahmen zusammenhängend sind.[10][11]
  • Die Kategorie der lokal zusammenhängenden Räume ist eine Kategorie mit beliebigen Produkten. Das Produkt einer Familie   in der Kategorie der lokal zusammenhängenden Räume ist das kartesische Produkt versehen mit der gröbsten lokal zusammenhängenden Topologie, die feiner als die Produkttopologie ist.[12]

Satz von Hahn-Mazurkiewicz Bearbeiten

Der Satz von Hahn-Mazurkiewicz, benannt nach Hans Hahn und Stefan Mazurkiewicz, charakterisiert diejenigen Hausdorffräume, die Quotientenraum des Einheitsintervalls sind. Nach Obigem müssen diese lokal zusammenhängend sein, aber auch Eigenschaften wie Kompaktheit, Zusammenhang und das zweite Abzählbarkeitsaxiom folgen sofort. Die Umkehrung ist die nicht-triviale Richtung im folgenden Satz

  • Satz von Hahn-Mazurkiewicz: Ein Hausdorffraum ist genau Quotientenraum des Einheitsintervalls, wenn er kompakt, zusammenhängend, lokal zusammenhängend ist und eine abzählbare Basis hat.

Zusammenhängende, kompakte Hausdorffräume mit abzählbarer Basis nennt man auch Kontinua. Damit lässt sich der Satz von Hahn-Mazurkiewicz wie folgt umformulieren:

  • Ein Kontinuum ist genau dann Quotientenraum des Einheitsintervalls, wenn es lokal zusammenhängend ist.[13]

Insbesondere ist eine kompakte und zusammenhängende Teilmenge des   genau dann stetiges Bild des Einheitsintervalls, wenn sie lokal zusammenhängend ist.

Einzelnachweise Bearbeiten

  1. Michael Starbird, Francis Su: Topology Through Inquiry, Ams/Maa Textbooks 2019, Band 58, ISBN 978-1-470-45276-6, Kap. 8.5: Local Connectedness
  2. Stephen Willard: General Topology, Dover Publications 1970, ISBN 0-48643479-6, Definition 27.7
  3. B. v. Querenburg: Mengentheoretische Topologie, Springer-Verlag 2001, ISBN 978-3-540-67790-1, Definition 4.16 (b)
  4. H. J. Kowalsky: Topologische Räume, Springer-Verlag 1961, Kap. III, §15.3: Lokaler Zusammenhang
  5. Stephen Willard: General Topoloy, Dover Publications 1970, ISBN 0-48643479-6, Theorem 27.9
  6. Michael Starbird, Francis Su: Topology Through Inquiry, Ams/Maa Textbooks 2019, Band 58, ISBN 978-1-470-45276-6, Theorem 8.24
  7. Stephen Willard: General Topoloy, Dover Publications 1970, ISBN 0-48643479-6, Theorem 27.12
  8. L. A. Steen, J. A. Seebach: Counterexamples in Topology, Dover Publications 1978, ISBN 978-0-486-68735-3, Section 4: Connectedness, Seite 31
  9. Lynn A. Steen, J. Arthur Seebach, Jr.,: Counterexamples in Topology. 1970, Section 4; Connectedness, S. 31
  10. N. Bourbaki, General Topology, Chapters 1-4, Springer Verlag 1989, ISBN 3-540-64241-2, §11.6: Locally connected spaces, Satz 13
  11. B. v. Querenburg: Mengentheoretische Topologie, Springer-Verlag 2001, ISBN 978-3-540-67790-1, Satz 4.17 (d)
  12. H. Herrlich, G. E. Strecker: Category Theory, Ally and Bacon Inc. 1973, Beispiel 18.8 (5)
  13. Katsuro Sakai: Geometric Aspects of General Topology, Springer-Verlag 2013, ISBN 978-4-431-54397-8, Kap. 5.14: Appendix: The Hahn-Mazurkiewicz-Theorem