Formel von Riemann-Hurwitz

mathematischer Satz

In der Mathematik macht die klassische Formel von Riemann-Hurwitz (auch als Satz von Hurwitz bezeichnet) eine Aussage über die holomorphen Abbildungen zwischen kompakten riemannschen Flächen und setzt Verzweigungsordnung und Blätterzahl in Zusammenhang mit dem topologischen Geschlecht (Anzahl der „Löcher“) der beiden Flächen.

Benannt ist die Formel nach Bernhard Riemann und Adolf Hurwitz.

Aussage Bearbeiten

Seien   und   kompakte riemannsche Flächen vom topologischen Geschlecht   bzw.   und   eine  -blättrige verzweigte holomorphe Überlagerung.   bezeichne die totale Verzweigungsordnung von  . Dann gilt zwischen diesen Größen folgende Beziehung:

 .

Die totale Verzweigungsordnung ist definiert als Summe aller Verzweigungsordnungen:

 

wobei   die Multiplizität der Abbildung   im Punkt   bezeichnet. Die Kompaktheit von   garantiert, dass es nur endlich viele Verzweigungspunkte gibt und damit die Summe endlich ist.

Anwendungsbeispiel Bearbeiten

Die Formel von Riemann-Hurwitz ist vor allem nützlich zur Berechnung des topologischen Geschlechts einer riemannschen Fläche. Sei zum Beispiel   die riemannsche Fläche der algebraischen Funktion  . Dadurch wird eine  -blättrige verzweigte Überlagerung auf die riemannsche Zahlenkugel (Geschlecht  ) definiert. Es lässt sich weiter feststellen, dass es genau   Verzweigungspunkte gibt, alle mit Verzweigungsordnung  . Eingesetzt in die Formel ergibt sich für das Geschlecht von  :  .

Verallgemeinerungen Bearbeiten

Algebraische Kurven Bearbeiten

Für nicht-singuläre projektive algebraische Kurven über einem algebraisch abgeschlossenen Körper gilt die Formel von Riemann-Hurwitz ebenfalls, und zwar in folgender Formulierung:

 

wobei   den Verzweigungsdivisor bezeichnet.

Erklärung der Notation: Das (arithmetische) Geschlecht   einer nicht-singulären projektiven Kurve   ist definiert als die Dimension der ersten Kohomologiegruppe der Garbe der Zariski-regulären Funktionen:  . Für den Fall, dass die Kurven über dem Grundkörper der komplexen Zahlen betrachtet werden, stimmt diese Definition des Geschlechtes mit dem topologischen Geschlecht überein und es handelt sich dann lediglich um eine Umformulierung der klassischen Aussage mit Hilfe der Algebra.

Da ein nicht-konstanter Morphismus   zwischen solchen algebraischen Kurven automatisch surjektiv ist, induziert er einen Monomorphismus   der zugehörigen Funktionenkörper. Dadurch kann   als Körpererweiterung aufgefasst werden. Der Grad   der Körpererweiterung ist endlich und stellt das algebraische Pendant zur Blätterzahl dar.

  bezeichnet die Garbe der relativen Differenziale. Wenn die Verzweigungspunkte zahm sind, d. h. falls der Grundkörper Charakteristik   hat oder falls die Charakteristik des Grundkörpers die Multiplizitäten   für keinen Punkt   teilt, dann gilt  , somit entspricht dann   der totalen Verzweigungsordnung.

Zahlentheorie Bearbeiten

Die Formel lässt sich in abgewandelter Form auf Erweiterungen algebraisch nicht-abgeschlossener Körper übertragen und findet in der Zahlentheorie Verwendung.

Literatur Bearbeiten