Bolzanofunktion

mathematische Funktion

Die Bolzanofunktion ist historisch die erste Konstruktion einer Funktion, die zwar stetig, aber nirgends differenzierbar ist. Sie ist nach ihrem Entdecker Bernard Bolzano benannt, sie wurde von ihm um 1830 gefunden und in seinem Manuskript Functionenlehre präsentiert (das aber erst 1930 veröffentlicht wurde).[1]

Bernard Bolzano

Bekannt wurde die Möglichkeit der Existenz stetiger, aber nirgends differenzierbarer Funktionen durch Karl Weierstraß (Vortrag vor der Berliner Akademie 1872), was damals auf viele schockierend wirkte. Weierstraß’ Beispielfunktion wurde durch Paul Du Bois-Reymond 1875 veröffentlicht. Auch Bernhard Riemann präsentierte eine solche 1861 in seinen Vorlesungen, und seitdem wurden viele weitere konstruiert.

Definition Bearbeiten

Die Bolzanofunktion ist als der Grenzwert einer Funktionenfolge definiert. Ferner kann man Definitionsbereich und Bildmenge als beliebige abgeschlossene Intervalle reeller Zahlen auswählen.

Sei also   der gewünschte Definitionsbereich und   die gewünschte Bildmenge.

 
Transformation eines linearen Stückes von   (gestrichelt) zu einem Bestandteil von   (durchgezogen)

  wird als lineare Funktion mit den Eckpunkten  ,   definiert:

 

  wird als stückweise lineare Funktion auf vier Intervallen definiert, mit den folgenden fünf Eckpunkten:

  1.  
  2.  
  3.  
  4.  
  5.  

  wird als lineare Funktion definiert, indem man jedes lineare Stück von   so transformiert, wie man   zu   transformiert hat, indem man neue Werte für  ,  ,   und   einsetzt, sodass   und   den Eckpunkten des linearen Stückes entsprechen.

  definiert man für ein beliebiges  , indem man jedes lineare Stück von   so transformiert, wie man   zu   transformiert hat, indem man neue Werte für  ,  ,   und   einsetzt, sodass   und   den Eckpunkten des linearen Stückes entsprechen.

Die Bolzanofunktion   ist der punktweise Grenzwert dieser Funktionenfolge:  .

Quellen Bearbeiten

  • Bernard Bolzano: Functionenlehre. Herausgegeben und mit Anmerkungen versehen von Karel Rychlik. In: Bernard Bolzanos Schriften, herausgegeben von der Königlich Böhmischen Gesellschaft der Wissenschaften, Bd. 1, Prag 1930.
  • Johan Thim: Continuous Nowhere Differentiable Functions. (pdf; 650 kB) Masterarbeit, Luleå University of Technology. Oktober 2003, S. 11–17, abgerufen am 16. September 2013 (englisch).

Einzelnachweise Bearbeiten

  1. Hans Wußing: Vorlesungen zur Geschichte der Mathematik, Berlin, VEB Deutscher Verlag der Wissenschaften, 1979, S, 225/6