Hauptmenü öffnen

Der Zweistichproben-t-Test ist ein Signifikanztest aus der mathematischen Statistik. In der üblichen Form prüft er anhand der Mittelwerte zweier Stichproben, ob die Mittelwerte zweier Grundgesamtheiten gleich oder verschieden voneinander sind.

Es gibt zwei Varianten des Zweistichproben-t-Tests:

  • den für zwei unabhängige Stichproben mit gleichen Standardabweichungen in beiden Grundgesamtheiten und
  • den für zwei abhängige Stichproben.

Liegen zwei unabhängige Stichproben mit ungleichen Standardabweichungen in beiden Grundgesamtheiten vor, so muss der Welch-Test eingesetzt werden.

GrundideeBearbeiten

Der Zweistichproben-t-Test prüft (im einfachsten Fall) mit Hilfe der Mittelwerte   und   zweier Stichproben, ob die Mittelwerte   und   der zugehörigen Grundgesamtheiten verschieden sind.

Die untenstehende Grafik zeigt zwei Grundgesamtheiten (schwarze Punkte) und zwei Stichproben (blaue und rote Punkte), die zufällig aus den Grundgesamtheiten gezogen wurden. Die Mittelwerte der Stichproben   und   können aus den Stichproben berechnet werden, die Mittelwerte der Grundgesamtheiten   und   sind jedoch unbekannt. In der Grafik sind die Grundgesamtheiten so konstruiert, dass die beiden Mittelwerte gleich sind, also  .

Wir vermuten nun, z. B. aufgrund historischer Ergebnisse oder theoretischer Überlegungen, dass die Mittelwerte   und   der Grundgesamtheiten verschieden sind, und möchten dies prüfen.

Im einfachsten Fall prüft der Zweistichproben-t-Test

  • die Nullhypothese, dass die Mittelwerte der Grundgesamtheiten gleich sind ( )
  • gegen die Alternativhypothese, dass die Mittelwerte der Grundgesamtheiten ungleich sind ( ).

Wenn die Stichproben geeignet gezogen wurden, zum Beispiel als einfache Zufallsstichproben, wird der Mittelwert   der Stichprobe 1 mit hoher Wahrscheinlichkeit nahe dem Mittelwert   der Grundgesamtheit 1 liegen und der Mittelwert   der Stichprobe 2 mit hoher Wahrscheinlichkeit nahe dem Mittelwert   der Grundgesamtheit 2 liegen. Das heißt, der Abstand zwischen der gestrichelten roten und schwarzen Linie bzw. der gestrichelten blauen und schwarzen Linie wird mit hoher Wahrscheinlichkeit klein sein.

  • Wenn der Abstand zwischen   und   (gestrichelte blaue bzw. rote Linie) klein ist, dann liegen auch die Mittelwerte der Grundgesamtheiten   und   nahe beieinander. Wir können die Nullhypothese nicht ablehnen.
  • Wenn der Abstand zwischen   und   (gestrichelte blaue bzw. rote Linie) groß ist, dann liegen auch die Mittelwerte der Grundgesamtheiten   und   weit voneinander entfernt. Wir können die Nullhypothese ablehnen.

Die genauen mathematischen Berechnungen finden sich in den folgenden Abschnitten.

Zweistichproben-t-Test für unabhängige StichprobenBearbeiten

Um Mittelwertunterschiede zwischen zwei Grundgesamtheiten mit der gleichen unbekannten Standardabweichung   zu untersuchen, wendet man den Zweistichproben-t-Test an. Dafür muss jede der Grundgesamtheiten normalverteilt sein oder die Stichprobenumfänge müssen so groß sein, dass der zentrale Grenzwertsatz anwendbar ist. Für den Test zieht man eine Stichprobe   vom Umfang   aus der 1. Grundgesamtheit und unabhängig davon eine Stichprobe   vom Umfang   aus der 2. Grundgesamtheit. Für die zugehörigen unabhängigen Stichprobenvariablen   und   gilt dann   und   mit den Mittelwerten   und   der beiden Grundgesamtheiten. Wird eine Zahl   für die Differenz der Mittelwerte vorgegeben, so lautet die Nullhypothese

 

und die Alternativhypothese

 .

Die Teststatistik ergibt sich zu

 

Darin sind   und   die respektiven Stichprobenmittelwerte und

 

die gewichtete Varianz, berechnet als gewichtetes Mittel der respektiven Stichprobenvarianzen   und  .

Die Teststatistik   ist unter der Nullhypothese t-verteilt mit   Freiheitsgraden. Der Prüfwert, also die Realisierung der Teststatistik anhand der Stichprobe, berechnet sich dann als

 

Dabei sind   und   die aus der Stichprobe berechneten Mittelwerte und

 

die Realisierung der gewichteten Varianz, berechnet aus den Stichprobenvarianzen   und  . Sie wird auch als gepoolte Stichprobenvarianz bezeichnet.

Zum Signifikanzniveau   wird die Nullhypothese abgelehnt zugunsten der Alternative, wenn

 

Alternativ können folgende Hypothesen mit der gleichen Teststatistik   getestet werden:

  •   vs.   und die Nullhypothese wird abgelehnt, wenn   bzw.
  •   vs.   und die Nullhypothese wird abgelehnt, wenn  .

BemerkungBearbeiten

Sind die Varianzen in den Grundgesamtheiten ungleich, dann muss der Welch-Test durchgeführt werden.

Beispiel 1Bearbeiten

Zwei Düngemittelsorten sollen verglichen werden. Dazu werden 25 Parzellen gleicher Größe gedüngt, und zwar   Parzellen mit Sorte A und   Parzellen mit Sorte B. Angenommen wird, dass die Ernteerträge normalverteilt seien mit gleichen Varianzen. Bei ersteren ergibt sich ein mittlerer Ernteertrag   mit Stichprobenvarianz   und bei den anderen Parzellen das Mittel   mit Varianz  . Für die gewichtete Varianz berechnet man damit

 .

Daraus erhält man die Prüfgröße

 .

Dieser Wert ist größer als das 0,975-Quantil der t-Verteilung mit   Freiheitsgraden  . Es kann also mit einer Konfidenz von   behauptet werden, dass ein Unterschied in der Wirkung der beiden Düngemittel besteht.

KompaktdarstellungBearbeiten

Zweistichproben-t-Test für zwei unabhängige Stichproben
Voraussetzungen
  •   und   unabhängig voneinander
  •   oder   mit  
  •   oder   mit  
  •   unbekannt
Hypothesen  
 
(rechtsseitig)
 
 
(zweiseitig)
 
 
(linksseitig)
Teststatistik  
Prüfwert  
mit  ,  ,
 ,

 
und  

Ablehnungsbereich      
oder
 
 

Zweistichproben-t-Test für abhängige StichprobenBearbeiten

 
Fehler erster Art von verbundenem und unverbundenem t-Test in Abhängigkeit von der Korrelation. Die simulierten Zufallszahlen entstammen einer bivariaten Normalverteilung mit einer Varianz von 1. Das Signifikanzniveau beträgt 5 % und die Fallzahl 60.
 
Güte von verbundenem und unverbundenem t-Test in Abhängigkeit von der Korrelation. Die simulierten Zufallszahlen entstammen einer bivariaten Normalverteilung mit einer Varianz von 1 und einer Differenz der Erwartungswerte von 0,4. Das Signifikanzniveau beträgt 5 % und die Fallzahl 60.

Hier sind   und   zwei paarweise verbundene Stichproben, die beispielsweise aus zwei Messungen an denselben Untersuchungseinheiten gewonnen wurden (Messwiederholung). Die Stichproben können auch aus anderen Gründen paarweise abhängig sein, beispielsweise wenn die  - und  -Werte Messergebnisse von Frauen bzw. Männern in einer Partnerschaft sind und Unterschiede zwischen den Geschlechtern interessieren.

Soll die Nullhypothese getestet werden, dass die beiden Erwartungswerte der zugrunde liegenden normalverteilten Grundgesamtheiten gleich sind, so können mit dem Einstichproben-t-Test die Differenzen   auf Null getestet werden. In der Praxis muss bei kleineren Stichprobenumfängen ( ) die Voraussetzung erfüllt sein, dass die Differenzen in der Grundgesamtheit normalverteilt sind. Bei hinreichend großen Stichproben verteilen sich die Differenzen der Paare annähernd normal um das arithmetische Mittel der Differenz der Grundgesamtheit. Insgesamt reagiert der t-Test auf Annahmeverletzung eher robust.[1]

Beispiel 2Bearbeiten

Um eine neue Therapie zur Senkung des Cholesterinspiegels zu testen, werden bei zehn Probanden vor und nach der Behandlung die Cholesterinwerte bestimmt. Es ergeben sich die folgenden Messergebnisse:

Vor der Behandlung: 223 259 248 220 287 191 229 270 245 201
Nach der Behandlung: 220 244 243 211 299 170 210 276 252 189
Differenz: 3 15 5 9 −12 21 19 −6 −7 12

Die Differenzen der Messwerte haben das arithmetische Mittel   und die Stichprobenstandardabweichung  . Das ergibt als Prüfgrößenwert

 .

Es ist  , also gilt  . Somit kann die Nullhypothese, dass die Erwartungswerte der Cholesterinwerte vor und nach der Behandlung gleich sind, die Therapie also keine Wirkung hat, zum Signifikanzniveau   nicht abgelehnt werden. Wegen   ist auch die einseitige Alternative, dass die Therapie den Cholesterinspiegel senkt, nicht signifikant. Wenn die Behandlung überhaupt einen Effekt hat, so ist dieser nicht groß genug, um ihn mit einem so kleinen Stichprobenumfang zu entdecken.

KompaktdarstellungBearbeiten

Zweistichproben-t-Test für zwei gepaarte Stichproben
Voraussetzungen
  •   unabhängig voneinander
  •   (zumindest approximativ)
Hypothesen  
 
(rechtsseitig)
 
 
(zweiseitig)
 
 
(linksseitig)
Teststatistik  
Prüfwert  
mit  ,  ,
und  
Ablehnungsbereich        

Welch-TestBearbeiten

Beim Welch-Test wird die Teststatistik ähnlich berechnet wie beim Zweistichproben-t-Test:

 

Jedoch ist diese Teststatistik unter der Nullhypothese nicht   verteilt, sondern wird mittels einer t-Verteilung mit einer modifizierten Anzahl von Freiheitsgraden approximiert (siehe auch Behrens-Fisher-Problem):

 

Dabei sind   und   die aus der Stichprobe geschätzten Standardabweichungen der Grundgesamtheiten sowie   und   die Stichprobenumfänge.

Obwohl der Welch-Test speziell für den Fall   entwickelt wurde, funktioniert der Test nicht gut, wenn mindestens eine der Verteilungen nicht-normal ist, die Fallzahlen klein und stark unterschiedlich ( ) sind.[2][3]

KompaktdarstellungBearbeiten

Welch-Test
Voraussetzungen
  •   und   unabhängig voneinander
  •   oder   mit  
  •   oder   mit  
  •   unbekannt
Hypothesen  
 
(rechtsseitig)
 
 
(zweiseitig)
 
 
(linksseitig)
Teststatistik  
Prüfwert  

mit  ,  ,
 ,
 ,
  und
 .

Ablehnungsbereich      
oder
 
 

Alternative TestsBearbeiten

Der t-Test wird, wie oben ausgeführt, zum Testen von Hypothesen über Erwartungswerte einer oder zweier Stichproben aus normalverteilten Grundgesamtheiten mit unbekannter Standardabweichung verwendet.

  • Die Annahme, dass jede der beiden Gruppen für sich normalverteilt ist, kann mit dem Shapiro-Wilk-Test oder dem Kolmogorow-Smirnow-Test geprüft werden. Liegt keine Normalverteilung vor, können als Ersatz für den t-Test nichtparametrische Tests angewendet werden, etwa ein Wilcoxon-Mann-Whitney-Test (auch: Wilcoxon-Rangsummentest) für unabhängige Stichproben oder ein Wilcoxon-Vorzeichen-Rang-Test für gepaarte Stichproben. Ein einfach durchführbares alternatives Verfahren zur schnellen Abschätzung ist der Schnelltest nach Tukey.
  • Sollen mehr als zwei normalverteilte Stichproben auf Gleichheit der Erwartungswerte getestet werden, kann eine Varianzanalyse angewendet werden.
  • Bei Mittelwertvergleichen normalverteilter Stichproben mit bekannter Standardabweichung können Gauß-Tests verwendet werden.

WeblinksBearbeiten

EinzelnachweiseBearbeiten

  1. Jürgen Bortz: Statistik für Human- und Sozialwissenschaftler. 6. Auflage, Springer, Berlin 2005, ISBN 3-540-21271-X, S. 142.
  2. R.R. Wilcox: Statistics for the Social Sciences. Academic Press Inc, 1996, ISBN 0-12-751540-2.
  3. D.G. Bonnet, R.M. Price: Statistical inference for a linear function of medians: Confidence intervals, hypothesis testing, and sample size requirements. In: Psychological Methods. Band 7, Nr. 3, 2002, doi:10.1037/1082-989X.7.3.370.