Starrer Körper (Algebra)

Ein starrer Körper (englisch: rigid field) ist im mathematischen Teilgebiet der Algebra eine ausgezeichnete algebraische Struktur, und zwar ein Körper, der als (Körper-)Automorphismus nur einen einzigen, den trivialen, nämlich die Identität, zulässt.[1]

BeispieleBearbeiten

Ein Primkörper   ist starr. Denn für jeden Automorphismus   ist   in   enthalten und ein Körper (der Fixkörper). Da   keinen echten Teilkörper enthält, ist der Fixkörper gleich ganz  , und   wirkt trivial auf  .

Die starren Körper der Charakteristik 0 sind genau die euklidischen Körper. Dazu gehören u. a. der Primkörper der rationalen Zahlen  , der Körper der reellen Zahlen   und der reell abgeschlossene Körper   der algebraischen reellen Zahlen.

GegenbeispieleBearbeiten

Ein Zwischenkörper ist nicht automatisch starr, wenn Ober- und Teilkörper es sind. Bspw. hat der quadratische Zahlkörper  , der zwischen den rationalen Zahlen und den reellen Zahlen liegt ( ), eine nicht-triviale Konjugationsabbildung.

Ein Körper der Charakteristik 0, der ein Element   mit   enthält, enthält auch eine Konjugationsabbildung, ist also nicht starr.

EinzelnachweiseBearbeiten

  1. Albrecht Beutelspacher: Lineare Algebra. 7. Auflage. Vieweg+Teubner Verlag, Wiesbaden 2010, ISBN 978-3-528-66508-1, S. 40–41.