Rotation eines Vektorfeldes

Differentialoperator auf ein Vektorfeld, Rotation eines Strömungsfeldes
(Weitergeleitet von Rotation (Mathematik))

Als Rotation oder Rotor[1][2] bezeichnet man in der Vektoranalysis, einem Teilgebiet der Mathematik, einen bestimmten Differentialoperator, der einem Vektorfeld im dreidimensionalen euklidischen Raum mit Hilfe der Differentiation ein neues Vektorfeld zuordnet.

Die Rotation eines Strömungsfeldes gibt für jeden Ort das Doppelte der Winkelgeschwindigkeit an, mit der sich ein mitschwimmender Körper dreht („rotiert“). Dieser Zusammenhang ist namensgebend.

Das Geschwindigkeitsfeld einer rotierenden Scheibe besitzt eine konstante Rotation parallel zur Drehachse

Es muss sich aber nicht immer um ein Geschwindigkeitsfeld und eine Drehbewegung handeln; beispielsweise betrifft das Induktionsgesetz die Rotation des elektrischen Feldes.

Ein Vektorfeld, dessen Rotation in einem Gebiet überall gleich null ist, nennt man wirbelfrei oder, insbesondere bei Kraftfeldern, konservativ. Ist das Gebiet einfach zusammenhängend, so ist das Vektorfeld genau dann der Gradient einer Funktion, wenn die Rotation des Vektorfeldes im betrachteten Gebiet gleich null ist.

Die Divergenz der Rotation eines Vektorfeldes ist gleich null. Umgekehrt ist in einfach zusammenhängenden Gebieten ein Feld, dessen Divergenz gleich null ist, die Rotation eines anderen Vektorfeldes.

Beispiele:

  • Das Vektorfeld, das an jedem Ort die Windrichtung und -geschwindigkeit eines Wirbelsturms angibt, hat in der Umgebung des Auges eine von null verschiedene Rotation.
  • Das Vektorfeld das an jedem Punkt einer rotierenden Scheibe die Geschwindigkeit angibt, hat an jedem Punkt dieselbe von null verschiedene Rotation. Die Rotation beträgt das Zweifache der Winkelgeschwindigkeit,
  • Das Kraftfeld, das an jedem Punkt die Gravitationskraft der Sonne auf ein Testteilchen angibt, ist wirbelfrei. Das Kraftfeld ist der negative Gradient der potentiellen Energie des Teilchens.

Definition der RotationBearbeiten

Definition in kartesischen KoordinatenBearbeiten

Seien   die kartesischen Koordinaten des dreidimensionalen euklidischen Raumes und  ,   und   die auf Einheitslänge normierten, zueinander senkrechten Basisvektoren, die an jedem Punkt in Richtung der zunehmenden Koordinaten zeigen.

Die Rotation eines dreidimensionalen, differenzierbaren Vektorfeldes

 

ist das dreidimensionale Vektorfeld

 

Man kann   wie das Kreuzprodukt als formale Determinante einer Matrix auffassen, deren erste Spalte die kartesischen Basisvektoren enthält, die zweite die partiellen Ableitungen nach den kartesischen Koordinaten und die dritte die zu differenzierenden Komponentenfunktionen

 

Allerdings sind hier die verschiedenen Spalten nicht Vektoren desselben Vektorraumes.

Gibt man die Vektoren als Spaltenvektoren ihrer kartesischen Komponenten an, dann ist   das formale Kreuzprodukt des Spaltenvektors der partiellen Ableitungen nach den kartesischen Koordinaten, des Nabla-Operators  , mit dem Spaltenvektor der kartesischen Komponentenfunktionen

 

wo die Koordinaten nach dem üblichen Schema x → 1, y → 2 und z → 3 durchnummeriert wurden.

Koordinatenunabhängige Definition mit dem Nabla-OperatorBearbeiten

Der Nabla-Operator ist auch in anderen Koordinatensystemen definiert und so kann mit ihm die Rotation koordinatenunabhängig durch

 

definiert werden. Mit dem Nabla-Operator können auch der Gradient- sowie die Divergenz eines Vektorfeldes dargestellt und Produktregeln hergeleitet werden.

Definition in KugelkoordinatenBearbeiten

Schreibt man das Vektorfeld in Kugelkoordinaten   als Linearkombination

 

der auf Einheitslänge normierten Vektoren

 

die an jedem Punkt in Richtung zunehmender  -Koordinaten zeigen, so ist die Rotation

 

Definition in ZylinderkoordinatenBearbeiten

Gibt man das Vektorfeld in Zylinderkoordinaten   als Linearkombination

 

der Vektoren

 

an, die auf Einheitslänge normiert an jedem Punkt in Richtung zunehmender  -Koordinaten zeigen, so ist die Rotation

 

Rotation in zwei DimensionenBearbeiten

Ein Vektorfeld im zweidimensionalen, euklidischen Raum kann als Vektorfeld

 

in drei Dimensionen aufgefasst werden, das nicht von der dritten Koordinate abhängt und dessen dritte Komponente verschwindet. Seine Rotation ist kein Vektorfeld dieser Art, sondern besteht gemäß

 

aus einer Komponente, die senkrecht zum Vektorfeld in drei Dimensionen ist. Definiert man in zwei Dimensionen die Rotation als den Differentialoperator

 

dann ist das Ergebnis ein Skalarfeld und kein Vektorfeld.

EigenschaftenBearbeiten

Koordinatenfreie Darstellung der Rotation als VolumenableitungBearbeiten

Mit Hilfe des Satzes von Stokes kann die Rotation, ähnlich wie die Divergenz (Quellendichte), als Volumenableitung dargestellt werden. Diese Darstellung hat den Vorteil, dass sie koordinatenunabhängig ist. Aus diesem Grund wird die Rotation im Bereich der Ingenieurwissenschaften oftmals direkt so definiert.

Ist   ein Raumgebiet mit stückweise glattem Rand   und dem Volumen  , dann kann die Rotation des Vektorfelds   im Punkt   mittels der Volumenableitung durch

 

berechnet werden. Dabei bezeichnet   das äußere vektorielle Flächenelement von   wobei   der nach außen zeigende Normaleneinheitsvektor und   das skalare Flächenelement ist. Zur Grenzwertbildung wird das Raumgebiet   auf den Punkt p zusammengezogen, sodass sein Inhalt   gegen null geht, siehe auch #Integralsatz von Stokes weiter unten.[3]

Ersetzt man   durch eine Strömungsgeschwindigkeit, erscheint die Rotation als Wirbeldichte. Ähnlich gebildete Synonyme existieren auch für die Divergenz (Quellendichte) und den Gradienten (Kraftdichte). Die Koordinatendarstellungen des vorigen Abschnitts ergeben sich aus der Volumenableitung, wenn man das jeweilige Volumenelement als Raumgebiet   wählt.

AxialvektorfeldBearbeiten

Die Rotation eines Vektorfeldes ist ein Pseudovektorfeld. Ein Vektorfeld geht bei Spiegelung am Ursprung in sein Negatives am gespiegelten Ort über, die Rotation des Vektorfeldes ändert bei dieser Spiegelung ihr Vorzeichen nicht,

 

RechenregelnBearbeiten

Die Rotation ist linear. Für alle Konstanten   und differenzierbaren Vektorfelder   und   gilt

 

Die Rotation eines Vektorfeldes verschwindet genau dann, wenn es lokal ein Gradientenfeld ist und die Divergenz eines Vektorfeldes verschwindet genau dann, wenn es lokal die Rotation eines anderen Feldes ist:

 

Für differenzierbare Funktionen   und Vektorfelder   und   gelten die Produktregeln

 

Darin ist   der Nabla-Operator und in der letzten Formel bildet grad den Vektorgradient. Für die zweifache Anwendung der Rotation gilt

 

wo   der Laplace-Operator ist. Für einen Vektor  , der von einem Skalar   abhängt, und dieser in 3D vom Ort, gilt die Kettenregel

 

AnwendungenBearbeiten

Zusammenhang zur WinkelgeschwindigkeitBearbeiten

Bei der Drehung eines starren Körpers um die  -Achse mit konstanter Winkelgeschwindigkeit   wächst der Drehwinkel   gleichmäßig mit der Zeit an,   und jeder Punkt durchläuft eine Bahn

 

Die Geschwindigkeit beträgt

 

Das Geschwindigkeitsfeld einer starren Drehung um die  -Achse ist also, wie oben im Beispiel angegeben,

 

Seine Rotation ist die doppelte Winkelgeschwindigkeit

 

Veranschaulichung durch DrehmomentBearbeiten

In einem Flächenkraftdichte-Feld[4]  , das jedem Körperoberflächenelement mit dem Inhalt   unabhängig von seiner Ausrichtung die Kraft   einprägt, erfährt eine Kugel mit dem Radius   (und dem zugehörigen Volumeninhalt  ) das Drehmoment

 

Vorausgesetzt ist, dass   im Bereich der Kugel konstant ist. Die Gleichung folgt aus dem #Integralsatz von Stokes

 

mit   und  .

Sätze, in denen die Rotation eine Rolle spieltBearbeiten

Zerlegung in quellen- und wirbelfreien TeilBearbeiten

Zweifach stetig differenzierbare Vektorfelder  , die mit ihren Ableitungen für große Abstände hinreichend rasch gegen null gehen, kann man eindeutig in einen wirbelfreien Teil   und einen quellenfreien Teil   zerlegen,

 

Dabei bezeichnen   und   den Divergenz- bzw. Gradient-Operator, wobei die Definition   die in der Physik übliche Konvention ist. Mathematisch ist:  

Diese Zerlegung ist Bestandteil des Helmholtz-Theorems.

Integralsatz von StokesBearbeiten

 
Fläche   mit Berandung  

Das Integral über eine Fläche   über die Rotation eines Vektorfeldes   ist nach dem klassischen Integralsatz von Stokes gleich dem Kurvenintegral über die Randkurve   über  

 

Durch das Doppelintegral wird links betont, dass man von einer zweidimensionalen Integration ausgeht. Auf der rechten Seite soll das Kreissymbol im Integralzeichen unterstreichen, dass es sich um ein Integral über einen geschlossenen Weg handelt. Die Orientierung entspricht dabei der Drei-Finger-Regel, siehe Abbildung rechts: die folgenden drei Vektoren, nämlich erstens der Vektor   in Richtung der Flächennormalen, zweitens der Vektor   in Tangentialrichtung der Kurve und drittens der vom Rand in die Fläche zeigenden Vektor, entsprechen Daumen, Zeigefinger und Mittelfinger der rechten Hand, das heißt, sie bilden ein Rechtssystem. Oft schreibt man   indem man mit dem Normalenvektor   die Richtung der Größe hervorhebt.

Der allgemeinere Satz von Stokes beinhaltet auch das Rotations-Theorem[5]

 

Darin ist   ein stetig differenzierbares Vektorfeld,   der nach außen gerichtete Normaleneinheitsvektor auf der geschlossenen Oberfläche   des Volumens  . Wenn das Volumen so klein wird, dass die Rotation in ihm näherungsweise konstant wird, folgt hieraus die #Koordinatenfreie Darstellung der Rotation als Volumenableitung.

Rotation von Tensoren zweiter StufeBearbeiten

Die Rotation von Tensorfeldern zweiter Stufe wird mit der Identität[6]

 

definiert. Aus ihr ergibt sich

 .

In kartesischen Koordinaten   bezüglich der Standardbasis ê1,2,3 schreibt sich die Rotation für das Tensorfeld  :

 

Darin ist ⊗ das dyadische Produkt. Es wird aber auch die transponierte Version   benutzt[7], die hieraus hervorgeht, indem die Komponenten gemäß   vertauscht werden.

Im Zusammenhang mit Tensoren sind Klammern ein wichtiges Hilfsmittel, um die Reihenfolge der Anwendung und die Argumente der verschiedenen Operatoren klarzustellen, was auf das Ergebnis einen entscheidenden Einfluss hat. Meistens ist beispielsweise

 

weswegen die Ausdrücke   und   mehrdeutig sind.

Symmetrische TensorenBearbeiten

Wenn der Tensor symmetrisch ist,   mit  , dann ist seine Rotation spurfrei:

 

denn Terme mit vertauschten Indizes   und   sind gleich groß, besitzen aber umgekehrtes Vorzeichen und heben sich daher in der Summe gegenseitig auf, oder verschwinden bei  , siehe auch Spatprodukt.

AbleitungsregelnBearbeiten

Die Produktregel führt im Produkt mit einem Skalar  , Vektoren   und dem Tensor   auf:

 

Darin bildet   die Vektorinvariante, # das äußere Tensorprodukt und und grad den Gradient. Ist T der Einheitstensor 1, dann liefert das bemerkenswerte Zusammenhänge:

 

In divergenzfreien Feldern ist also  , was beim Poincaré-Lemma ausgenutzt wird.

Bei der Verknüpfung der Rotation mit anderen Differentialoperatoren entstehen unter Beteiligung eines Tensors teilweise ähnliche Formeln wie sie aus der Vektoranalysis bekannt sind:

 
 

oder mit den Nabla-Operator

 


Darin ist Δ = 𝜵2 der Laplace-Operator.

Siehe auchBearbeiten

EinzelnachweiseBearbeiten

  1. Walter Rogowski: Wie kann man sich vom Rotor (Wirbel) eines Vektorfeldes und vom Vektorpotentiale eine Anschauung verschaffen? In: Archiv für Elektrotechnik. Band 2, 1914, S. 234–245, doi:10.1007/BF01655798.
  2. Hans Karl Iben: Tensorrechnung. Mathematik für Naturwissenschaftler und Ingenieure. Vieweg+Teubner Verlag, Stuttgart, Leipzig 1999, ISBN 978-3-519-00246-8, doi:10.1007/978-3-322-84792-8.
  3. Bronstein, Semendjajew, Musiol, Mühlig: Taschenbuch der Mathematik. 8. Aufl. Harri Deutsch, Frankfurt 2012, ISBN 978-3-8171-2008-6 (Abschn. 13.2, Räumliche Differentialoperatoren).
  4. Formelsammlung Mechanik (Memento vom 10. August 2016 im Internet Archive)
  5. Altenbach (2012), S. 46.
  6. C. Truesdell: Festkörpermechanik II. In: S. Flügge (Hrsg.): Handbuch der Physik. Band VIa/2. Springer, 1972, ISBN 3-540-05535-5.
  7. Altenbach (2012), S. 43.

LiteraturBearbeiten

WeblinksBearbeiten