Reihenresonanz

Impedanzminimum elektronischer Schaltungen in der Umgebung einer Resonanzfrequenz
(Weitergeleitet von Reihenschwingkreis)

Reihenresonanz, auch Spannungsresonanz oder Serienresonanz sind Bezeichnungen für das Impedanzminimum elektronischer Schaltungen in der Umgebung einer Resonanzfrequenz.

Minimum der Impedanz Z bei Reihenresonanz

Reihenschaltungen zur Nutzung dieser Resonanzen werden als Siebkreis bzw. Reihenschwingkreis bezeichnet.

Reihenschwingkreis

Die bei Resonanz vorliegende niedrige Impedanz wird beim Saugkreis verwendet, um unerwünschte Frequenzen kurzzuschließen.

Resonanz beim ReihenschwingkreisBearbeiten

 
Widerstandszeigerdiagramm im allgemeinen Fall und bei Resonanz

Induktivitäten und Kapazitäten besitzen einen frequenzabhängigen Blindwiderstand. Damit wird der Scheinwiderstand   einer Reihenschaltung aus R, L und C auch frequenzabhängig:

 

Wenn der Term   null wird, ist der Scheinwiderstand   minimal und ein reiner, reeller Wirkwiderstand  . Daraus lässt sich durch Umformung und Auflösung nach   die Frequenz bestimmen, bei der die Resonanz eintritt – die Resonanzfrequenz  . Man erhält die Thomsonsche Schwingungsgleichung:

 

Weil der Scheinwiderstand minimal wird, erreicht der Strom durch die Schaltung bei Resonanz seinen Maximalwert   und kann bei angelegter Klemmenspannung U nach dem ohmschen Gesetz berechnet werden

 

Resonanzspannung an BauelementenBearbeiten

 
Zeigerdiagramm im allgemeinen und im Resonanzfall

An den Blindwiderständen XL und XC tritt bei Resonanz ein weiterer Effekt auf: An beiden wird die Spannung betragsmäßig gleich, die sogenannte Resonanzspannung  :

 

Sie erreicht für den Fall

 

Werte, die erheblich größer als die angelegte Klemmenspannung U sein können. Diese Spannungsüberhöhung wird bei Energiesparlampen und der Hintergrundbeleuchtung von Notebooks benötigt, um die Gasentladungslampen betreiben zu können. Diese Schaltungseigenschaft ist Ursprung der alternativen Bezeichnung Spannungsresonanz für die Reihenresonanz.

PhasenwinkelBearbeiten

Der Phasenwinkel (Phasenverschiebung)   bei Resonanz beträgt

 

also keine Phasenverschiebung, da sich die Schaltung wie ein reiner Wirkwiderstand verhält.

KreisgüteBearbeiten

Die Kreisgüte Q, auch Gütefaktor, Resonanzüberhöhung oder Resonanzschärfe, ist der Kehrwert des Verlustfaktors d. Für die Reihenschaltung von R, L und C erhält man:

 

Damit gibt sich für die Resonanzspannung:

 

SonderfälleBearbeiten

 
Typische Impedanzverläufe des Scheinwiderstandes verschiedener Kondensatoren

Reihenresonanz mit allen Begleiterscheinungen kann auch bei Resonatoren beobachtet werden, wo keine Kondensatoren oder Spulen zu erkennen sind, sondern sie durch den technischen Aufbau bedingt ist. Dann können unerwünschte und unvermeidliche Nebeneffekte auftreten. In der Umgebung der Reihenresonanz ist die Impedanz erheblich geringer als erwartet.

Reihenresonanz bei KondensatorenBearbeiten

Jeder Kondensator benötigt Anschlussdrähte, die im Ersatzschaltbild als Induktivität dargestellt werden, die mit dem Kondensator eine Reihenschaltung bildet. Diese ESL (von engl. equivalent series inductance L) führt zusammen mit der Kapazität zu einer charakteristischen Eigenresonanz, bei der die Impedanz der Anordnung minimal wird. Dieser Effekt ist noch ausgeprägter bei Wickelkondensatoren, deren Folien wie eine Spule gewickelt sind. Wickelkondensatoren sind deshalb für Hochfrequenzzwecke vielfach ungeeignet.

Ist bei einer Anwendung eine geringe Impedanz über einem weiten Frequenzbereich erforderlich, schaltet man Kondensatoren verschiedener Bauarten parallel. Bekannt ist das Parallelschalten eines Elektrolytkondensators mit einem Keramikkondensator oder auch das Parallelschalten von Keramikkondensatoren verschiedener Baugrößen.

Reihenresonanz von SpulenBearbeiten

 
Einlagige Zylinderspule
 
Spannungsverlauf längs einer Spule bei Reihenresonanz
 
Kreuzwickelspule mit geringer Eigenkapazität

Spulen besitzen nicht nur zwischen den Anschlussdrähten eine geringe Kapazität, auch zwischen den einzelnen Windungen. Zusammen mit den dazwischen liegenden Induktivitäten entsteht ein Gebilde aus verteiltem L und C, das – ähnlich wie ein Dipol – mehrere Resonanzfrequenzen besitzt, die mit den Formeln der Leitungstheorie berechnet werden können.

Speist man eine lange Zylinderspule mit hochfrequentem Strom, kann man mit einem Oszilloskop die Spannung als Funktion der Länge messen. Folgt diese einer im Bild dargestellten Funktion, liegt Reihenresonanz vor, obwohl kein Kondensator zu erkennen ist. Die Gesamtspannung der Spule ist dann sehr gering und kommt einem selektiven Kurzschluss nahe. Die Gesamtimpedanz ist erheblich kleiner als der rechnerische Wert des induktiven Widerstandes.

Die tiefste Resonanzfrequenz kann durch eine besondere Wickeltechnik vergrößert werden. Bei einer Kreuzwickelspule ist der mittlere Abstand aufeinanderfolgender Windungen erheblich größer als bei üblicher Zylinderwicklung, wodurch sich die Kapazität aufeinanderfolgender Windungen verringert. Langgestreckte, einlagig gewickelte Zylinderspulen besitzen die höchste Eigenresonanzfrequenz. Bei sehr vielen Windungen, wie bei der Sekundärspule eines Tesla-Transformators, sinkt sie allerdings auf etwa 500 kHz. Eine Faustregel besagt, dass die tiefste Reihenresonanz einer (Vakuum-)Wellenlänge entspricht, die etwa doppelt so lang ist wie die Drahtlänge der Spule.

Reihenresonanz bei SchwingquarzenBearbeiten

In vielen elektronischen Schaltungen ersetzt man Schwingkreise durch Schwingquarze wegen ihrer teilweise erheblich besseren Eigenschaften. Obwohl diese Kristalle keine Spulen oder Kondensatoren besitzen, zeigen sie auf ganz speziellen Frequenzen alle Eigenschaften der Reihenresonanz. Ausgehend von der tiefsten Frequenz verhalten sich diese wie 1:3:5:7:…, sind extrem stabil und weisen erheblich höhere Gütefaktoren als Schwingkreise auf, weshalb man Quarzoszillatoren als Taktgeber in Uhren und Sendern verwendet. Alle Schwingquarze besitzen Parallelresonanz auf einer geringfügig höheren Frequenz.

Reihenresonanz bei LeitungenBearbeiten

 
Detailansicht einer LNB-Platine mit rot markierten λ/4-Leitungen.

Bei Geräten im Radarbereich wird die Eigenschaft von Stichleitungen ausgenutzt, den Abschlusswiderstand abhängig von der Länge L zu transformieren (siehe Leitungstheorie). Streifenleitungen sind wegen der Permittivität des isolierenden Trägermaterials verkürzt.

  • Falls L = λ/2 und ein Ende mit Masse verbunden ist, misst man am anderen Ende ebenfalls null Ohm. Dieses Drahtstück wirkt bei der Wellenlänge der Reihenresonanz wie ein Saugkreis und für Gleichstrom wie ein Kurzschluss. Das gilt unverändert, wenn die Drahtlänge verdoppelt oder verdreifacht wird.
  • Falls L = λ/4 und ein Ende frei ist, also keine Verbindung zu anderen Bauelementen besitzt, misst man am anderen Ende Reihenresonanz, also besonders geringe Impedanz. Das kurze Drahtstück wirkt bei dieser Wellenlänge wie ein perfekter Abblockkondensator und ersetzt diese in LNBs. Im nebenstehenden Bild sieht man sechs λ/4-Leitungen, deren Startpunkte mit einem roten x markiert ist.

Siehe auchBearbeiten