Hauptmenü öffnen
Pellsche Gleichung für d = 2 und sechs ganzzahlige Lösungen

Als Pellsche Gleichung (nach John Pell, 1611–1685) bezeichnet man eine diophantische Gleichung der Form

mit positiv ganzzahligem .

Ist eine Quadratzahl, so besitzt die Gleichung offenbar nur die trivialen Lösungen . Andernfalls gibt es unendlich viele Lösungen, die man mit Hilfe der Kettenbruchentwicklung von bestimmen kann. Die verwandten Gleichungen und werden oft ebenfalls Pellsche Gleichungen genannt.

Die Gleichung wird John Pell fälschlicherweise zugeschrieben. Korrekter wäre die Bezeichnung Fermatsche Gleichung.[1][2]

Die Gleichung war schon Brahmagupta und Bhaskara II. bekannt. Die Lösung dieser Gleichung war als Problem von Pierre de Fermat in einem Brief an Bernard Frénicle de Bessy gestellt worden und 1657 als Problem veröffentlicht. Pell befasste sich nie mit der Lösung der Gleichung. Brouncker fand einige Lösungen (veröffentlicht im Commercium epistolicum of John Wallis 1658). Leonhard Euler stieß auf die Lösung von Brouncker in der lateinischen Ausgabe des Treatise of Algebra von John Wallis und benannte die Gleichung fälschlich nach Pell.[3][4] Euler veröffentlichte zuerst 1732 über die Pell-Gleichung und fand später die Verbindung mit Kettenbrüchen (veröffentlicht 1765), die im Grunde schon hinter der Lösung von Brouncker steckt. Joseph-Louis Lagrange befasste sich nach Euler ausführlich mit der Gleichung und gab als Erster einen Beweis, dass es für jedes eine Lösung gibt, wobei Fermat möglicherweise auch einen Beweis hatte.[5]

Algebraische ZahlentheorieBearbeiten

Das Auffinden aller Lösungen ist für spezielle   äquivalent dazu, die Einheiten des Ganzheitsrings des reellquadratischen Zahlkörpers   zu finden. Nach dem Dirichletschen Einheitensatz hat die Einheitengruppe den Rang 1, d. h., es gibt eine Fundamentaleinheit (oder auch Grundeinheit)   mit der sich alle Lösungen als   darstellen lassen.

Beispielsweise ist für   die Einheit   eine Fundamentaleinheit, sie entspricht der Lösung x=17, y=12, und man kann die anderen Lösungen aus ihr erzeugen.

LösungsmöglichkeitenBearbeiten

Lösung mit Hilfe der KettenbruchentwicklungBearbeiten

Die Kettenbruchentwicklung einer quadratisch irrationalen Zahl   ist unendlich und periodisch. Zum Beispiel hat   die Kettenbruchentwicklung

 

Bricht man die Entwicklung jeweils an der Stelle   ab, so erhält man beginnend mit  

 

und findet an den Stellen   und   die Lösungen

 

von   und

 

von  .

Weiter stellt man fest, dass für   jedes Element der abgebrochenen Kettenbruchentwicklung der Länge   eine Lösung einer Pellschen Gleichung mit rechter Seite   ist.

Generieren weiterer Lösungen auf Basis einer bekanntenBearbeiten

Ist eine Lösung   bekannt, so lassen sich weitere Lösungen mit einer Matrizenmultiplikation bestimmen. Es gilt

 
Beispiel

Die Pellsche Gleichung für   hat die Minimallösung  . Die nächsten Lösungen ergeben sich dann zu

 
 

usw.

Das Rinderproblem des ArchimedesBearbeiten

Bei der Lösung des Rinderproblems des Archimedes stößt man (wenn man geschickt rechnet)[6] auf die Pellsche Gleichung   zum Parameter  , die als Minimallösung

 
 

hat. Für das Rinderproblem braucht man allerdings nicht die Minimallösung, sondern eine (genauer: die kleinste) Lösung, bei der   ein Vielfaches von   ist.

Alternativ dazu kann man für die Pellsche Gleichung mit Parameter   die Minimallösung (jetzt ohne Nebenbedingung) suchen, die von folgender Größenordnung ist (vgl. o. g. Quelle):

 
 

Nicht zufällig ist 2 · 3,7653 · 10103272 ≈ (2 · 1,0993199 · 1044)2329, wodurch numerisch der Zusammenhang zwischen den Minimallösungen der beiden Pellschen Gleichungen hergestellt ist.

Für das Rinderproblem selbst ist als Zwischenergebnis die Zahl 4657 · 957 · y2 ≈ 1,5401 · 10206537 von Belang. Das Endergebnis ist das 50.389.082-Fache davon, also ca. 7,760 · 10206544.

LiteraturBearbeiten

  • H. W. Lenstra Jr.: Solving the Pell Equation, Notices of the American Mathematical Society, Band 49, Heft 2, 2002, S. 182–192, online (PDF; 237 kB).
  • M.J.Jacobson Jr.,H.C.Williams: Solving the Pell Equation,CMS Books in Mathematics, Springer 2009, ISBN 978-0-387-84922-5
  • Leonard Dickson: History of the theory of numbers, Washington D.C.: Carnegie Institution, 1920, Kapitel 12 (zur Geschichte der Pellschen Gleichung)

WeblinksBearbeiten

EinzelnachweiseBearbeiten

  1. Siehe Artikel von H. W. Lenstra Jr.
  2. So auch Dickson, History of the theory of numbers, Band 2, S. 341 (Kapitel 12 zur Geschichte der Pellschen Gleichung)
  3. Noel Malcolm, Jacqueline Steadall: John Pell in his correspondence with Sir Charles Cavendish, Oxford UP, 2005, S. 320
  4. André Weil, Number theory - An approach through history from Hammurapi to to Legendre, Birkhäuser 1984, S. 174
  5. Dickson, History of the theory of numbers, Band 2, Carnegie Institution 1920, S. 353. Er benutzte seine Methode des unendlichen Abstiegs
  6. Siehe Artikel von H. W. Lenstra Jr.