Hauptmenü öffnen

Ein Mittelwert (kurz auch nur Mittel) ist eine, nach einer bestimmten Rechenvorschrift, aus gegebenen Zahlen ermittelte weitere Zahl. Einige von beliebig vielen berechenbaren Mittelwerten sind das arithmetische, das geometrische und das quadratische Mittel.

Mittelwerte werden am häufigsten in der Statistik angewendet, wobei mit Mittel oder Durchschnitt meistens das arithmetische Mittel gemeint ist. Der Mittelwert ist ein Kennwert für die zentrale Tendenz einer Verteilung. Bei ungenauer Formulierung werden die Begriffe Mittelwert und Erwartungswert häufig synonym verwendet, der Erwartungswert beruht jedoch auf der theoretisch zu erwartenden Häufigkeit, während der (arithmetische) Mittelwert aus konkretem Datenmaterial ermittelt wird.

Inhaltsverzeichnis

Definitionen der bekanntesten und wichtigsten Maße der zentralen TendenzBearbeiten

Im Folgenden seien   gegebene reelle Zahlen, in der Statistik etwa Messwerte, deren Mittelwert berechnet werden soll.

Mittelwert Definition[1]
Modus (Statistik) Ausprägung mit höchster Häufigkeit
Median (Statistik) Für die sortierten Werte  

 

Arithmetisches Mittel  
Geometrisches Mittel  
Harmonisches Mittel  
Quadratisches Mittel  
Kubisches Mittel  

Beispiele für die Verwendung unterschiedlicher MittelwerteBearbeiten

Merkmalsträger   Wert
  2 (A)
  2 (A)
  2 (A)
  3 (B)
  3 (B)
  4 (C)
  5 (D)
 
Säulendiagramm zu den Beispielen

Im Folgenden soll beispielhaft an den sieben rechts angegebenen Ausprägungen gezeigt werden, wo welche Definition des Mittelwerts sinnvoll ist.

Der Modus ist bereits in der Nominalskala sinnvoll, in der einzelne Merkmale nicht geordnet werden können. Sind etwa von sieben befragten Personen drei katholisch (A), zwei evangelisch (B), einer muslimisch (C) und einer Hindu (D), so liegt der Modus bei  , denn dies kommt am häufigsten vor.

Für den Median ist eine Ordinalskala Voraussetzung, in der die Merkmale geordnet werden können. Auf die Frage nach der Qualität des Essens eines Restaurants antworten beispielsweise drei Kunden mit „sehr gut“ (A), zwei mit „gut“ (B) sowie je einer mit „mittel“ und „schlecht“ (C bzw. D). Nach Ordnen der Daten wie in der Liste rechts, erkennt man, dass die mittlere Beobachtung bei   liegt. Der Median ist also  .

Das arithmetische Mittel wird beispielsweise zum Berechnen der Durchschnittsgeschwindigkeit genutzt: Läuft eine Schildkröte erst eine Stunde lang drei Meter pro Stunde, dann drei Stunden lang je zwei Meter und beschleunigt für jeweils eine Stunde nochmals auf drei, vier und fünf Meter pro Stunde, so ergibt sich als arithmetisches Mittel bei einer Strecke von 21 Metern in 7 Stunden:

 

Auch das harmonische Mittel kann zur Berechnung einer durchschnittlichen Geschwindigkeit sinnvoll sein, wenn nicht über gleiche Zeiten, sondern über gleiche Strecken gemessen wird: Die Schildkröte laufe den 1. Meter mit 3 Metern pro Stunde, weitere 3 m mit jeweils 2 m/h und beschleunigt auf den letzten 3 Metern nochmals auf jeweils 3, 4 und 5 m/h. Die Durchschnittsgeschwindigkeit ergibt sich bei einer Strecke von 7 Metern in   Stunden:

 

Mit dem geometrischen Mittel errechnet man den mittleren Wachstumsfaktor. Eine Bakterienkultur wachse beispielsweise am ersten Tag auf das Fünffache, am zweiten auf das Vierfache, dann zweimal auf das Dreifache und die letzten drei Tage verdoppelt sie sich täglich. Der Bestand nach dem siebten Tag errechnet sich also durch   Alternativ kann mit dem geometrischen Mittel der Endbestand ermittelt werden, denn

 

und somit ist

 

Ein tägliches Wachstum der Bakterienkultur um das 2,83-Fache hätte also nach sieben Tagen zum selben Ergebnis geführt.

GeschichteBearbeiten

In der Mathematik treten Mittelwerte, insbesondere die drei klassischen Mittelwerte (arithmetisches, geometrisches und harmonisches Mittel), bereits in der Antike auf. Pappos von Alexandria kennzeichnet 10 verschiedene Mittelwerte m von 2 Zahlen   und   ( ) durch spezielle Werte des Streckenverhältnisses  . Auch die Ungleichung zwischen harmonischem, geometrischem und arithmetischem Mittel ist in der Antike bereits bekannt und geometrisch interpretiert. Im 19. und 20. Jahrhundert spielen Mittelwerte in der Analysis eine spezielle Rolle, dort im Wesentlichen im Zusammenhang mit berühmten Ungleichungen und wichtigen Funktionseigenschaften wie Konvexität (Hölder-Ungleichung, Minkowski-Ungleichung, Jensensche Ungleichung usw.). Dabei wurden die klassischen Mittelwerte in mehreren Schritten verallgemeinert, zunächst zu den Potenzmittelwerten (siehe Abschnitt Hölder-Mittel unten) und diese wiederum zu den quasi-arithmetischen Mittelwerten. Die klassische Ungleichung zwischen harmonischem, geometrischem und arithmetischem Mittel geht dabei über in allgemeinere Ungleichungen zwischen Potenzmittelwerten bzw. quasi-arithmetischen Mittelwerten.

Gemeinsame Definition der drei klassischen MittelwerteBearbeiten

Die Idee, die den drei klassischen Mittelwerten zugrunde liegt, lässt sich auf folgende Weise allgemein formulieren:

Beim arithmetischen Mittel sucht man die Zahl  , für die

 

gilt, wobei sich die Summe links über   Summanden erstreckt. Das arithmetische Mittel mittelt also bzgl. der arithmetischen Verknüpfung „Summe“. Anschaulich bestimmt man mit dem arithmetischen Mittel aus Stäben verschiedener Länge einen mit einer durchschnittlichen oder mittleren Länge.

Beim geometrischen Mittel sucht man die Zahl  , für die

 

gilt, wobei sich das Produkt links über   Faktoren erstreckt. Das geometrische Mittel mittelt also bzgl. der arithmetischen Verknüpfung „Produkt“.

Das harmonische Mittel   löst die Gleichung

 

ZusammenhängeBearbeiten

Zusammenhang von arithmetischem, harmonischem und geometrischem MittelBearbeiten

Der Kehrwert des harmonischen Mittels ist gleich dem arithmetischen Mittel der Kehrwerte der Zahlen.

Für   hängen die Mittelwerte untereinander in folgender Weise zusammen:

 

oder nach dem geometrischen Mittel aufgelöst

 

Ungleichung der MittelwerteBearbeiten

Die Ungleichung vom arithmetischen und geometrischen Mittel vergleicht die Werte des arithmetischen und geometrischen Mittels zweier gegebener Zahlen: Es gilt für positive Variable stets

 

Die Ungleichung lässt sich auch auf weitere Mittelwerte ausdehnen, z. B. (für positive Variable)

 

Für zwei (positive) Variablen gibt es auch eine grafische Veranschaulichung:

 
Geometrischer Beweis der Ungleichung für Mittelwerte zweier Variablen

Das geometrische Mittel folgt direkt aus dem euklidischen Höhensatz und das harmonische Mittel aus dem euklidischen Kathetensatz mit der Beziehung

 

Weitere Mittelwerte und ähnliche FunktionenBearbeiten

Gewichtete MittelBearbeiten

Die gewichteten oder auch gewogenen Mittelwerte entstehen, wenn man den einzelnen Werten unterschiedliche Gewichte zuordnet, mit denen sie in das Gesamtmittel einfließen; zum Beispiel, wenn bei einer Prüfung mündliche und schriftliche Leistung unterschiedlich stark in die Gesamtnote einfließen.

Die genauen Definitionen finden sich hier:

Logarithmischer MittelwertBearbeiten

Der logarithmische Mittelwert   zwischen   und   ist definiert als:

 

Für   liegt der logarithmische Mittelwert zwischen dem geometrischen und dem arithmetischen Mittelwert.

Winsorisiertes und getrimmtes MittelBearbeiten

Kann man davon ausgehen, dass die Daten durch „Ausreißer“, das heißt einige wenige zu hohe oder zu niedrige Werte, kontaminiert sind, so kann man die Daten entweder durch Stutzen oder durch „Winsorisieren“ (benannt nach Charles P. Winsor) bereinigen und den getrimmten (bzw. gestutzten)   (engl. truncated mean) oder winsorisierten Mittelwert   (engl. Winsorized mean) berechnen. In beiden Fällen sortiert man die Beobachtungswerte zuerst nach aufsteigender Größe. Beim Trimmen schneidet man sodann eine gleiche Anzahl von Werten am Anfang und am Ende der Folge ab und berechnet von den übrig bleibenden Werten den Mittelwert. Hingegen werden beim „Winsorisieren“ die Ausreißer am Anfang und Ende der Folge durch den nächstkleineren (bzw. -größeren) Wert der restlichen Daten ersetzt.

Beispiel: Hat man 10 aufsteigend sortierte reelle Zahlen  , so ist das 10-%-getrimmte Mittel gleich

 

Indes ist der 10-%-winsorisierte Mittelwert gleich

 

D. h., das getrimmte Mittel liegt zwischen dem arithmetischen Mittel (keine Stutzung) und dem Median (maximale Stutzung). Üblicherweise wird ein 20-%-getrimmtes Mittel verwendet, d. h., 40 % der Daten bleiben unberücksichtigt für die Mittelwertberechnung. Die Prozentzahl richtet sich im Wesentlichen nach der Zahl der vermuteten Ausreißer in den Daten; für Bedingungen für eine Trimmung von weniger als 20 % sei auf die Literatur verwiesen.[2][3]

QuartilsmittelBearbeiten

Das Quartilsmittel ist definiert als der Mittelwert des 1. und 3. Quartils:

 

Hierbei bezeichnet   das 25-%-Quantil (1. Quartil) und entsprechend   das 75-%-Quantil (3. Quartil) der Messwerte.

Das Quartilsmittel ist robuster als das arithmetische Mittel, aber weniger robust als der Median.

Mitte der kürzesten HälfteBearbeiten

Sei   das kürzeste Intervall unter allen Intervallen mit  , so ist   dessen Mitte (middle of the shortest half). Bei unimodalen symmetrischen Verteilungen konvergiert dieser Wert gegen das arithmetische Mittel.[4]

Gastwirth-Cohen-MittelBearbeiten

Das Gastwirth-Cohen-Mittel nutzt drei Quantile der Daten: das  -Quantil und das  -Quantil jeweils mit Gewicht   sowie den Median mit Gewicht  :

 

mit   und  .

Spezialfälle sind

  • das Quartilsmittel mit  ,   und
  • das Trimean mit  ,  .

BereichsmittelBearbeiten

Das Bereichsmittel ist definiert als der arithmetische Mittelwert aus dem größten und dem kleinsten Beobachtungswert:

 

Dies ist gleichbedeutend mit:

 

Das „a-Mittel“Bearbeiten

Für einen gegebenen reellen Vektor   mit   wird der Ausdruck

 

wobei über alle Permutationen   von   summiert wird, als „ -Mittel“ [ ] der nichtnegativen reellen Zahlen   bezeichnet.

Für den Fall  , ergibt das genau das arithmetische Mittel der Zahlen  ; für den Fall   ergibt sich genau das geometrische Mittel.

Für die  -Mittel gilt die Muirhead-Ungleichung.

Beispiel: Sei   und

  dann gilt   und die Menge der Permutationen (in Kurzschreibweise) von   ist
 

Damit ergibt sich

 

Gleitende DurchschnitteBearbeiten

Gleitende Durchschnitte werden in der dynamischen Analyse von Messwerten angewandt. Sie sind außerdem ein gängiges Mittel der technischen Analyse in der Finanzmathematik. Mit gleitenden Durchschnitten kann das stochastische Rauschen aus zeitlich voranschreitenden Signalen herausgefiltert werden. Häufig handelt es sich dabei um FIR-Filter. Jedoch muss beachtet werden, dass die meisten gleitenden Durchschnitte dem echten Signal hinterherlaufen. Für vorausschauende Filter siehe z. B. Kalman-Filter.

Gleitende Durchschnitte benötigen normalerweise eine unabhängige Variable, die die Größe der nachlaufenden Stichprobe bezeichnet, bzw. das Gewicht des vorangehenden Wertes für die exponentiellen gleitenden Durchschnitte.

Gängige gleitende Durchschnitte sind:

  • arithmetische gleitende Durchschnitte (Simple Moving Average – SMA),
  • exponentiell gleitende Durchschnitte (Exponential Moving Average – EMA),
  • doppelt exponentiell gleitende Durchschnitte (Double EMA, DEMA),
  • dreifach,  -fach exponentiell gleitende Durchschnitte (Triple EMA – TEMA),
  • linear gewichtete gleitende Durchschnitte (linear abfallende Gewichtung),
  • quadratisch gewichtete gleitende Durchschnitte und
  • weitere Gewichtungen: Sinus, Triangular, …

In der Finanzliteratur können außerdem sogenannte adaptive gleitende Durchschnitte gefunden werden, die sich automatisch einer sich ändernden Umgebung (andere Volatilität/Streuung etc.) anpassen:

  • Kaufmann’s Adaptive Moving Average (KAMA) sowie
  • Variable Index Dynamic Average (VIDYA).

Für die Anwendung von gleitenden Durchschnitten siehe auch Gleitende Durchschnitte (Chartanalyse) und MA-Modell.

Sonstige MittelwerteBearbeiten

Sonstige Mittelwerte, die in einem eigenen Artikel beschrieben werden, sind der Modus (eigentlich kein Mittelwert, sondern der häufigste Wert) und der Median, der robust gegenüber extremen Abweichungen, sogenannten Ausreißern, ist.

Außerdem lassen sich Mittelwerte kombinieren; so entsteht etwa das arithmetisch-geometrische Mittel, das zwischen dem arithmetischen und geometrischen Mittel liegt.

Verallgemeinerte MittelwerteBearbeiten

Es gibt eine Reihe weiterer Funktionen, mit denen sich die bekannten und weitere Mittelwerte erzeugen lassen.

Hölder-MittelBearbeiten

Für positive Zahlen   definiert man den  -Potenzmittelwert, auch Hölder-Mittel (englisch  -th power mean) als

 

Für   ist der Wert durch stetige Ergänzung definiert:

 

Man beachte, dass sowohl Notation als auch Bezeichnung uneinheitlich sind.

Für   ergeben sich daraus etwa das harmonische, das geometrische, das arithmetische, das quadratische und das kubische Mittel. Für   ergibt sich das Minimum, für   das Maximum der Zahlen.

Außerdem gilt bei festen Zahlen  : Je größer   ist, desto größer ist  ; daraus folgt dann die verallgemeinerte Ungleichung der Mittelwerte

 

Lehmer-MittelBearbeiten

Das Lehmer-Mittel[5] ist ein anderer verallgemeinerter Mittelwert; zur Stufe   ist es definiert durch

 

Es hat die Spezialfälle

  •  
  •   ist das harmonische Mittel;
  •   ist das geometrische Mittel von   und  ;
  •   ist das arithmetische Mittel;
  •  

Stolarsky-MittelBearbeiten

Das Stolarsky-Mittel zweier Zahlen   ist definiert durch

 

Integraldarstellung nach ChenBearbeiten

Die Funktion

 

ergibt für verschiedene Argumente   die bekannten Mittelwerte von   und  :[6]

  •   ist das harmonische Mittel.
  •   ist das geometrische Mittel.
  •   ist das arithmetische Mittel.

Aus der Stetigkeit und Monotonie der so definierten Funktion   folgt die Mittelwertungleichung

 

Mittelwert einer FunktionBearbeiten

Das arithmetische Mittel einer stetigen Funktion   in einem geschlossenen Intervall   ist

 , wobei   die Zahl der Stützstellen ist.

Das quadratische Mittel einer stetigen Funktion ist

 

Diese finden in der Technik erhebliche Beachtung, siehe Gleichwert und Effektivwert.

LiteraturBearbeiten

  • F. Ferschl: Deskriptive Statistik. 3. Auflage. Physica-Verlag Würzburg, ISBN 3-7908-0336-7.
  • P. S. Bullen: Handbook of Means and Their Inequalities. Kluwer Acad. Pub., 2003, ISBN 1-4020-1522-4 (umfassende Diskussion von Mittelwerten und den mit ihnen verbundenen Ungleichungen).
  • G. H. Hardy, J. E. Littlewood, G. Polya: Inequalities. Cambridge Univ. Press, 1964.
  • E. Beckenbach, R. Bellman: Inequalities. Springer, Berlin 1961.
  • F. Sixtl: Der Mythos des Mittelwertes. R. Oldenbourg Verlag, München/Wien 1996, 2. Aufl., ISBN 3-486-23320-3

WeblinksBearbeiten

  Wiktionary: Durchschnittswert – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen
  Wiktionary: Mittelwert – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen

EinzelnachweiseBearbeiten

  1. F. Ferschl: Deskriptive Statistik. 3. Auflage. Physica-Verlag Würzburg, ISBN 3-7908-0336-7. S. 48–74.
  2. R. K. Kowalchuk, H. J. Keselman, R. R. Wilcox, J. Algina: Multiple comparison procedures, trimmed means and transformed statistics. In: Journal of Modern Applied Statistical Methods. Band 5, 2006, S. 44–65.
  3. R. R. Wilcox, H. J. Keselman: Power analysis when comparing trimmed means. In: Journal of Modern Applied Statistical Methods. Band 1, 2001, S. 24–31.
  4. L. Davies: Data Features. In: Statistica Neerlandica. Band 49, 1995, S. 185–245.
  5. Eric W. Weisstein: Lehmer Mean. In: MathWorld (englisch).
  6. H. Chen: Means Generated by an Integral. In: Mathematics Magazine. Vol. 78, Nr. 5 (Dez. 2005), S. 397–399.