Eine Markoff-Zahl (nach Andrei Andrejewitsch Markow) ist eine natürliche Zahl oder , die als Lösung der diophantischen Markoff-Gleichung

Die ersten Einträge im Baum der Markoff-Zahlen

vorkommt. Die ersten Markoff-Zahlen sind

1, 2, 5, 13, 29, 34, 89, 169, 194, 233, 433, 610, 985, 1325, …

Sie sind Teile der Lösungen der Markoff-Gleichung, von denen die ersten lauten. Die Lösungen werden auch als Markoff-Tripel bezeichnet.[1][2]

Markoff-Zahlen kommen in der Theorie der Quadratischen Formen und der diophantischen Approximationen vor: Ist eine Markoff-Zahl, so ist sowohl ein Element des sogenannten Markoff-Spektrums (quadratische Formen) als auch des Lagrange-Spektrums (diophantische Approximationen).

Eigenschaften Bearbeiten

Es gibt unendlich viele Markoff-Zahlen und -Tripel. Da die Markoff-Gleichung symmetrisch in den Variablen ist, kann man die Lösungstripel   der Größe nach geordnet mit   angeben. Mit Ausnahme der beiden kleinsten Tripel   und   bestehen die Lösungstripel   aus drei verschiedenen Zahlen. Eine seit langer Zeit untersuchte – aber noch unbewiesene – Vermutung besagt, dass das größte Element   eines Tripels schon das Markoff-Tripel   bestimmt.[3]

Die Markoff-Zahlen können wie rechts abgebildet in einem Baum angeordnet werden. Die zur Region 1 benachbarten Markoff-Zahlen sind die Fibonacci-Zahlen   mit ungeradem  . Die zur Region 2 benachbarten Markoff-Zahlen sind die sogenannten Pell-Zahlen   mit ungeradem  .[4]

Ist eine Markoff-Zahl   ungerade, so erfüllt sie die Kongruenz   und wenn sie gerade ist, dann gilt  .[5] Die drei Markoff-Zahlen eines Tripels sind stets paarweise teilerfremd.

Die Erzeugung neuer Markoff-Tripel aus bekannten Bearbeiten

Man kann aus einer Lösung   der Markoff-Gleichung mittels   weitere Lösungen erzeugen.[6] Dabei ist es nicht nötig, dass die Lösung, mit der man beginnt, der Größe nach geordnet ist. Die unterschiedlichen Anordnungen von   und   können unterschiedliche Tripel   erzeugen.

Nimmt man zum Beispiel  , dann bekommt man die drei benachbarten Tripel   und   im Markoff-Baum, wenn man   gleich   oder   setzt. Wendet man   zweimal an, ohne die Einträge im Tripel umzusortieren, so bekommt man wieder das Ausgangstripel.

 
Fehler der Approximation für die ersten 1000 Markoff-Zahlen

Beginnt man mit   und vertauscht fortwährend   und   vor jeder Transformation, so erzeugt man damit die oben erwähnten Markoff-Tripel, die Fibonacci-Zahlen enthalten. Mit dem gleichen Starttripel aber mit Vertauschen von   und   erzeugt man die Pell-Lösungen.

Wie groß ist die n-te Markoff-Zahl? Bearbeiten

Im Jahr 1982 bewies Don Zagier eine asymptotische Formel für die Anzahl der Markoff-Tripel unterhalb einer Schranke und vermutete, dass die  -te Markoff-Zahl asymptotisch gegeben ist durch

  mit  

(hier wird die O-Notation von E. Landau verwendet).[7][8] Der Fehler   ist in der nebenstehenden Abbildung illustriert. Die 1000. Markoff-Zahl ist ca.  .[9]

Literatur Bearbeiten

  • Thomas Cusick, Mari Flahive: The Markoff and Lagrange spectra. In: Math. Surveys and Monographs, 30, 1989, AMS, Providence
  • Serge Perrine: La théorie de Markoff et ses développements. Tessier & Ashpool, 2002, arxiv:math-ph/0307032
  • Caroline Series: The Geometry of Markoff Numbers. In: The Mathematical Intelligencer, 7 (3), 1985, S. 20–29.
  • Eric W. Weisstein: Markov number. In: MathWorld (englisch).

Einzelnachweise Bearbeiten

  1. Siehe auch den Abschnitt „Die Markoff-Zahlen“ in Paulo Ribenboims Buch Meine Zahlen, meine Freunde: Google Books
  2. Die Markoff-Zahlen sind die Folge A002559 in Neil Sloanes Online Encyclopedia of Integer Sequences.
  3. Der Lösungsansatz von Norbert Riedel aus dem Jahr 2007 (Markoff Equation and Nilpotent Matrices, arxiv:0709.1499) wird diskutiert in dem langen Artikel von Serge Perrine: De Frobenius à Riedel: analyse des solutions de l’équation de Markoff, Archive-Ouvertes (PDF; 713 kB).
  4. Diese genügen, mit den Startwerten   und  , der Rekursion  . Die Pell-Zahlen mit ungeradem   haben die Eigenschaft, dass   eine Quadratzahl ist (sie sind Lösungen   der Pellschen Gleichung  ).
  5. Ying Zhang: Congruence and Uniqueness of Certain Markov Numbers, Acta Arithmetica 128 3, 2007, 295–301
  6. Es gilt nämlich  .
  7. Don B. Zagier: On the Number of Markoff Numbers Below a Given Bound. In: Mathematics of Computation, 160, 1982, S. 709–723, ams.org (PDF; 1,2 MB)
  8. Siehe den Vortrag von M. Waldschmidt (Memento vom 24. Februar 2014 im Internet Archive; PDF; 4,2 MB)
  9. Folge A002559 in OEIS