Hauptmenü öffnen

Logarithmenpapier

Funktionspapier mit einem speziellen Aufdruck eines Koordinatennetzes
Log paper.svg

Logarithmenpapier (auch logarithmisches Papier) gehört zu den mathematischen Papieren (auch: Netzpapier) und ist mit einem Koordinatennetz überzogen, so dass darauf Koordinaten auf einfache Weise dargestellt werden können.

Es kann entweder für eine oder beide Achsen die logarithmische Achseinteilung verwendet werden.

Durch die Möglichkeit, grafische Darstellungen auch aus Computerprogrammen heraus zu erzeugen, nimmt die Bedeutung solcher Spezialpapiere ab.

Inhaltsverzeichnis

Einfachlogarithmisches PapierBearbeiten

Einfachlogarithmisches Papier oder auch halblogarithmisches Papier ist mit einem speziellen Koordinatennetz versehen, das entweder waagerecht oder senkrecht logarithmisch geteilt ist. Das bedeutet, die tatsächliche Abmessung ist der Logarithmus der angeschriebenen Zahl.

 
Einfachlogarithmisches Papier, waagerecht logarithmisch geteilt
 
Einfachlogarithmisches Papier, senkrecht logarithmisch geteilt

Bei waagerecht einfachlogarithmischem Papier werden Logarithmusfunktionen   als Geraden dargestellt. Bei senkrecht einfachlogarithmischem Papier werden Exponentialfunktionen   als Geraden dargestellt, denn aus   folgt  .

Das Spezialpapier ermöglicht also ein einfaches Zeichnen solcher Funktionen, bzw. ein einfaches Überprüfen, ob gegebene Wertepaare zu einer solchen Funktion passen (sie müssen dann auf einer Geraden liegen).

Beispiele

Nachfolgend sind die Funktionen mit den Gleichungen   und   auf waagerecht einfachlogarithmischem Papier dargestellt.

Nachfolgend sind die Funktionen mit den Gleichungen   und   auf senkrecht einfachlogarithmischem Papier dargestellt.

Doppeltlogarithmisches PapierBearbeiten

Doppeltlogarithmisches Papier ist mit einem speziellen Koordinatennetz versehen, das sowohl waagerecht als auch senkrecht logarithmisch geteilt ist. Das bedeutet, die tatsächliche Abmessung ist der Logarithmus der angeschriebenen Zahl.

Bei doppeltlogarithmischem Papier werden Potenzfunktionen   als Geraden dargestellt, denn aus   folgt  , wobei der Faktor   zu einer additiven Konstante   wird.

Es ermöglicht also ein einfaches Zeichnen solcher Funktionen, bzw. ein einfaches Überprüfen, ob gegebene Wertepaare zu einer Potenzfunktion passen (sie müssen dann auf einer Geraden liegen). Die Geradensteigung ist der Exponent  .

Nachfolgend sind die Funktionen mit den Gleichungen   und   auf doppeltlogarithmischem Papier dargestellt.

Siehe auchBearbeiten

WeblinksBearbeiten

  Commons: Logarithmenpapier – Sammlung von Bildern, Videos und Audiodateien