Liste der größten optischen Teleskope

Wikimedia-Liste

Die Liste der größten optischen Teleskope enthält Teleskope für Strahlung mit einer Wellenlänge kleiner 100 µm, die beugungs- bzw. Seeing-begrenzte Abbildung haben:

  • Rang (keine Angabe: besondere Bauart oder historisch/in Bau)
  • Durchmesser: Maß der optischen Hauptkomponente / des flächenmäßig entsprechenden Kreises (teils segmentierter Spiegel); die Angaben können wegen der auch üblichen Zoll-Maße leicht differieren (Rundungen)
  • Höhe: Lage über dem Meeresspiegel
  • Jahr der Inbetriebnahme: Zum Teil können die in verschiedenen Quellen angegebenen Daten für die Fertigstellung um ein Jahr oder mehr differieren. Dies liegt meistens daran, dass „Inbetriebnahme“ unterschiedlich definiert ist (Erstes Licht, First Light; erste Aufnahmen (oft mit provisorischen Kameras); Ende der Bauarbeiten; Einweihung oder wissenschaftliche Inbetriebnahme).
Größenvergleich der größten Teleskope

Nicht gelistet sind Teleskope, die nicht funktionierten oder weitab ihrer geplanten Leistung lagen, wie das 45-m-Teleskop von Johannes Hevelius (1645), die Spiegelteleskope von Robert Hooke (1680), Pater Noel (1761) und Rev. J. Mitchell (1780–1789), der Craig-Refraktor (1852), der Pariser 120 cm Reflektor (1876)[1] oder das Multiple Mirror Telescope (1979), das dem Magnum Mirror Telescope vorausging.

Diese Listen wurden verschiedentlich erstellt, sie zeigen auch die Entwicklung der Teleskopgröße und -technik auf[2] geben Trends wieder, oder zeigen nationales Prestigestreben.[3][4]

Nr. Name Durch­messer Objektiv Bild Standort Höhe ü. M. Jahr Bemerkungen, ggf. Etendue (sortierbar)
1 Large Binocular Telescope (LBT) 2 × 8,4 m
≙ 11,8 m
Glasspiegel
(Borsilikatglas
Ohara E6)
LargeBinoTelescope NASA.jpg Mount Graham, Arizona, USA 3267 m 2005 2 Einzelspiegel auf gemeinsamer Montierung (Fertigstellung des zweiten Spiegels 2007, der Gesamtanlage 2011[5]), interferometrische Basislänge 22,8 m. Die Spiegel des Teleskops wurden von dem Richard F. Caris Mirror Laboratory hergestellt und bereits während des Gusses durch Zentrifugalkraft der sich langsam drehenden Form parabolisiert.[6] Durch das damit mögliche große Öffnungsverhältnis f/1,14 konnte eine kompakte Bauweise erreicht werden. Bau und Instrumentierung kosteten etwa 100 Millionen Euro.
2 Gran Telescopio Canarias (GTC) 10,4 m Glasspiegel
(Glaskeramik
Zerodur),
segment­iert
Grantelescopio.jpg Roque de los Muchachos, La Palma, Spanien 2396 m 2007 Teleskop mit aus 36 sechseckigen Segmenten zusammengesetztem Hauptspiegel.[7]
Bau und Instrumentierung kosteten etwa 140 Millionen Euro.
3 Keck I 10 m Glasspiegel
(Glaskeramik
Zerodur),
segment­iert
KeckTelescopes-hi.png Mauna-Kea-Observatorium, Hawaii, USA 4200 m 1993 bis 2008 weltweit größten Teleskope. Es sind zudem die ersten Teleskope mit funktionierendem segmentierten Hauptspiegel, sie sind aus 36 sechseckigen Segmenten zusammengesetzt. Keck I und II können zu einem Interferometer mit der Basislänge von 85 m verbunden werden. Bau und Instrumentierung kosteten etwa 140 Millionen Dollar.

Beobachtungen mit den Teleskopen trugen u. a. zu den mit Nobelpreisen ausgezeichneten Entdeckungen des Schwarzen Lochs im Zentrum der Milchstraße und der beschleunigten Expansion des Universums bei.

4 Keck II 10 m Glasspiegel
(Glaskeramik
Zerodur),
segment­iert
KeckTelescopes-hi.png Mauna-Kea-Observatorium, Hawaii, USA 4200 m 1996
5 Southern African Large Telescope (SALT) 10 m Glasspiegel
(Glaskeramik
Sitall),
segment­iert
Southern African Large Telescope 720x576px.jpg South African Astronomical Observatory, Karoo-Hochebene, Südafrika 1760 m 2005 Ein sphärischer Hauptspiegel aus 91 sechseckigen Segmenten mit einem festen Höhenwinkel führte zu einer bezogen auf den Durchmesser günstigen Bauweise (20 Mill. USD). Die damit einhergehenden Abbildungs­fehler werden durch einen kleineren Korrektor beseitigt. Ein Konstruktions­fehler minderte bis zur Behebung 2010 die Bildqualität.

Der effektiver Spiegeldurchmesser hängt von dem Höhenwinkel ab.

6 Hobby-Eberly Telescope (HET) 9–10 m Glasspiegel
(Glaskeramik
Zerodur),
segment­iert
HET Dome.jpg McDonald Observatory, Davis Mountains, Texas, USA 1980 m 1999 Ein sphärischer Hauptspiegel aus 91 sechseckigen Segmenten mit einem festen Höhenwinkel führte zu einer bezogen auf den Durchmesser günstigen Bauweise (13,5 Mill. USD). Die damit einhergehenden Abbildungs­fehler werden durch einen kleineren Korrektor beseitigt.[7] Bis zu einer Aufrüstung im Jahr 2015 war eine Apertur von 9,2 m nutzbar; der effektiver Spiegeldurchmesser hängt von dem Höhenwinkel ab.
7 Subaru Telescope 8,2 m Glasspiegel
(Glas ULE)
MaunaKea Subaru.jpg Mauna-Kea-Observatorium, Hawaii, USA 4139 m 1999 Größtes Teleskop des japanischen nationalen astronomischen Observatoriums (NAOJ); die Gesamtkosten betrugen 40 Milliarden Yen. Der Hauptspiegel wurde durch Verschweißen von sechseckigen Segmenten aus dem Glas ULE hergestellt. Mithilfe der im Primärfokus installierbaren Subprime-Cam besitzt das Teleskop ein Sichtfeld von 0,5°, mit der ab 2011 verfügbaren Hyper Subprime-Cam ein Sichtfeld von 1,5° und damit eine Etendue von 65.[8]
8 VLT UT1 (Antu) 8,2 m Glasspiegel
(Glaskeramik
Zerodur)
Paranal opendome.jpg Paranal-Observatorium, Chile 2635 m 1998 Die vier Einzelteleskope (UT = unit telescope) bilden zusammen das Very Large Telescope. Die Teleskopspiegel wurden von der Schott AG, der Firma REOSC und von der Carl Zeiss AG hergestellt und bereits während des Gusses durch langsame Rotation der Form parabolisiert. UT4 (Yepun) verfügt seit 2016 über einen deformierbaren Sekundärspiegel, der adaptive Optik ermöglicht.[9] Die UTs können zusammen als optisches Interferometer mit Basislänge bis 200 m betrieben werden. Bau und Betrieb des Observatoriums kosteten in den ersten 15 Jahren etwa 500 Millionen Euro.

Beobachtungen mit den Teleskopen trugen u. a. zu den mit Nobelpreisen ausgezeichneten Entdeckungen des Schwarzen Lochs im Zentrum der Milchstraße und der beschleunigten Expansion des Universums; auch gelangen 2004 erstmals Abbildungen von Exoplaneten und dann beispielsweise 2010 die Untersuchung deren Atmosphäre.[10]

9 VLT UT2 (Kueyen) 8,2 m Glasspiegel
(Glaskeramik
Zerodur)
Paranal opendome.jpg Paranal-Observatorium, Chile 2635 m 1999
10 VLT UT4 (Yepun) 8,2 m Glasspiegel
(Glaskeramik
Zerodur)
Paranal opendome.jpg Paranal-Observatorium, Chile 2635 m 2001
11 VLT UT3 (Melipal) 8,2 m Glasspiegel
(Glaskeramik
Zerodur)
Paranal opendome.jpg Paranal-Observatorium, Chile 2635 m 2002
12 Gemini Northern Telescope 8,1 m Glasspiegel
(Glas ULE)
Gemini Observatory at sunset.jpg Mauna-Kea-Observatorium, Hawaii, USA 4213 m 1999 Der Hauptspiegel wurde von der Firma Corning durch Verschweißen von sechseckigen Segmenten aus dem Glas ULE hergestellt, anschließend von der Firma REOSC in Paris geschliffen und poliert.
Mithilfe einer Kamera zur Speckle-Interferometrie konnten in dem Observatorium im Jahr 2012 Aufnahmen im sichtbaren Licht mit eine Auflösung von 0,02 Bogensekunden gemacht werden.[11]
Die Errichtung beider Observatorien kostete etwa 187 Millionen Dollar.
13 Gemini Southern Telescope 8,1 m Glasspiegel
(Glas ULE)
Gemini South 01.jpg Cerro Tololo Inter-American Observatory, Cerro Pachón, Chile 2740 m 2000
14 MMT 6,5 m Glasspiegel
(Borsilikatglas
Ohara E6)
MMT Observatory.jpg Fred-Lawrence-Whipple-Observatorium, Arizona, USA 2606 m 2000 aus Umbau des Multiple Mirror Telescope entstanden. Der Spiegel des Teleskops wurde vom Richard F. Caris Mirror Laboratory hergestellt und bereits während des Gusses durch langsame Rotation der Form parabolisiert.[6]
15 Walter Baade Telescope / Magellan I 6,5 m Glasspiegel
(Borsilikatglas
Ohara E6)
Magellan telescopes.jpg Las Campanas-Observatorium, Chile 2380 m 2000 Gregory-Teleskop. Der Spiegel des Teleskops wurde vom Richard F. Caris Mirror Laboratory hergestellt und bereits während des Gusses durch langsame Rotation der Form parabolisiert.[6]
16 Landon Clay Telescope / Magellan II 6,5 m Glasspiegel
(Borsilikatglas
Ohara E6)
Magellan telescopes.jpg Las Campanas-Observatorium, Chile 2380 m 2002
17 James Webb Space Telescope 6,5 m Beryllium
mit Gold verspiegelt,
segment­iert
James Webb Space Telescope.jpg Lagrangepunkt L2 1,5 Mio. km 2022[12] Größtes im Weltraum befindliche Teleskop. Es ist als mehrspiegeliges Korsch-Teleskop konstruiert. Der leichtgewichtige Hauptspiegel aus 18 sechseckigen Segmenten durfte sich erst im All entfalten – seine Segmente aus Beryllium wiegen jeweils nur 20 kg und weisen unterhalb 100 K (der Temperatur des Teleskops am Lagrangepunkt L2) eine niedrige Wärme­ausdehnung auf.[13]

Mit den Gesamtkosten von 9,7 Milliarden US-Dollar handelt sich neben dem Hubble-Weltraumteleskop um das teuerste wissenschaftliche Projekt in der unbemannten Raumfahrt.

18 Big Telescope Alt-azimuthal (BTA) 6,0 m Glasspiegel
(Borsilikatglas)
Главная обсерватория.jpg Selentschuk-Observatorium, Kaukasus, Russland 2070 m 1975 bis 1993 weltgrößtes Teleskop. Der erste mit 42 Tonnen weltweit schwerste Spiegel wurde 1979 durch einen verbesserten ersetzt, der 2007-2018 überarbeitet wurde.[14] Erstes Großteleskop, das nicht parallaktisch (äquatorial), sondern azimutal montiert wurde, was den mechanischen Aufwand wesentlich verringerte und seitdem bei allen Großteleskopen so praktiziert wird.
19 Large Zenith Telescope (LZT) 6,0 m Metallspiegel
(Quecksilber,
flüssig, rotierend)
180724main 6-mMirror.jpg Malcolm Knapp Research Forest, Britisch-Kolumbien, Kanada 0395 m 2004 Zenitteleskop, dessen Spiegel aus flüssigem Quecksilber gebildet wird. Das Quecksilber befindet sich in einer gleichmäßig rotierenden waagerechten Schale, so dass es durch Zusammenspiel von Zentrifugalkraft und Gewichtskraft eine nahezu perfekt auf den Zenith ausgerichtete Parabelform erhält.
Aus dem Konstruktionsprinzip resultierten für die Größe sehr geringe Kosten von unter 1 Million USD.[15] Es wurde bis 2016 betrieben.
20 Hale-Teleskop 5,1 m Glasspiegel
(Pyrex)
P200 Dome Open.jpg Palomar-Observatorium, Kalifornien, USA 1706 m 1949 bis 1975 weltgrößtes Teleskop. Der Spiegel wurde seinerzeit neuartig aus dem Glas Pyrex und einer rück­seitigen Rippen­struktur gegossen und weist eine geringe thermische Ausdehnung als zuvor gefertigte Spiegel aus anderen Glassorten auf. Eine, später als Serruier-Tubus bezeichnete Konstruktion half erstmals, Primär- und Sekundärspiegel trotz der durch die großen Massen hervorgerufene Durchbiegung des Tubus aufeinander ausgerichtet zu halten.

Mit dem Teleskop untersuchte Walter Baade Cepheiden und konnte damit den Abstand von Galaxien um den Faktor 2 berichtigen. Spektroskopien an Quasaren zeigten deren Natur als entfernte Galaxien.

21 Discovery Channel Telescope (DCT) 4,3 m Glasspiegel
(Glas ULE)
The Dome of Discovery Channel Telecope.JPG Happy Jack, Arizona 2360 m 2012 Der Hauptspiegel wurde durch Verschweißen von sechseckigen Segmenten aus dem Glas ULE hergestellt. Ein Korrektor kann das Sichtfeld auf 2° erweitern, womit eine Etendue von 38 erreicht wird.[16][17][18][8]
22 William Herschel-Teleskop 4,2 m Glasspiegel
(Glaskeramik
Cer-Vit)
William herschel Telescope Dome.jpg Roque de los Muchachos, La Palma, Kanarische Inseln 2396 m 1987 Das seinerzeit weltweit dritt­größte und größtes europäische Tele­skop wurde von Sir Howard Grubb, Parsons and Co. mit einem Spiegel aus der Glaskeramik Cer-Vit hergestellt.

Das Teleskop wurde 2022 mit einem Korrektor (Teleskop) im Primärfokus ausgestattet und erlangte dadurch ein Sichtfeld von 2° und eine Etendue von 43, was für umfangreiche Spektroskopien genutzt wird.[19][20]

23 SOAR Telescope 4,1 m Glasspiegel
(Glas ULE)
SOAR telescope at twlight.jpg Cerro Tololo Inter-American Observatory, Cerro Pachón, Chile 2738 m 2004 Der Hauptspiegel wurde durch Verschweißen von sechseckigen Segmenten aus dem Glas ULE hergestellt.[16]
24 VISTA 4,1 m Glasspiegel
(Glaskeramik
Zerodur)
VISTA at Paranal Eso0704b.tif Paranal-Observatorium, Chile 2635 m 2009 Das Teleskop hat ein großes Sichtfeld von 1,65° durch eine 2-Spiegelanordnung ähnlich einem Ritchey-Chrétien-Teleskop, der ein 3-linsiger Korrektor folgt, womit eine Etendue von 6,8 erreicht wird. Der Hauptspiegel hat dabei ein Öffnungsverhältnis von f/1.[21] Es wird für Himmels­durch­musterungen im Infrarot eingesetzt.[22]
Eine neue Korrektor-Optik 4MOST für Spektroskopie ab 2023 erlaubt ein Sichtfeld von 2,5° und ergibt eine Etendue von 51.[23]
25 Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) 4,0 m Glasspiegel
(Glaskeramik
Zerodur),
segment­iert
LAMOST telescope org.jpg Xinglong Station, China 0960 m 2008 größtes Teleskop Chinas, einem Schmidt-Teleskop ähnlich, wodurch es ein großes Sichtfeld von 5° und eine Etendue von 245 besitzt. Die Schmidt-Platte ist zur Vermeidung von Farbfehlern als Spiegel ausgeführt wie der sphärische Spiegel segmentiert aufgebaut.[7]
Das Teleskop wird für Spektroskopie eingesetzt.[8]
26 Victor M. Blanco Telescope 4,0 m Glasspiegel
(Glaskeramik
Cer-Vit)
4m-Victor M. Blanco Telescope.jpg Cerro Tololo Inter-American Observatory, Chile 2200 m 1976 Größtes Teleskop der südlichen Hemisphäre bis 1998. Spiegelteleskop mit einem Hauptspiegel aus der Glaskeramik Cer-Vit.[24]
Mit einem 5-linsigem Korrektor DECam besitzt das Teleskop seit 2012 ein Sichtfeld von 2,2° und eine Etendue von 40.[8]
27 Daniel K. Inouye Solar Telescope 4 m Glasspiegel
(Glaskeramik
Zerodur)
Haleakala Observatory 2017.jpg Haleakalā 3000 m 2020 größtes Teleskop zur Sonnen­beobachtung. Bei diesem Gregory-Teleskop ist der Sekundär­spiegel versetzt, außerhalb der Apertur des Primär­spiegels angeordnet. Mit einer adaptiven Optik lassen sich so 30 km große Details der Sonnen­oberfläche abbilden. Für den Hauptspiegel wurde die Glaskeramik Zerodur verwendet.[7]
28 International Liquid Mirror Telescope 4 m Metallspiegel
(Quecksilber,
flüssig, rotierend)
Top-view-of-the-newly-formed-ILMT-mirror-The-adhesive-tapes-of-the-installed-mylar-cover.png Observatorium Devasthal, Indien 2450 m 2022[25] Zenitteleskop. Der Primärspiegel bildet sich aus flüssigem Quecksilber in einer gleichmäßig rotierenden Schale, so dass es durch Zusammenspiel von Zentrifugalkraft und Gewichtskraft eine nahezu perfekte Parabelform erhält. Das Sichtfeld im Zenit wird durch einen Korrektor erweitert. Als Bildsensor dient ein CCD-Sensor, bei dem die durch das Licht hervorgerufenen Ladungen in der gleichen Geschwindigkeit verschoben werden, wie sich das Himmelsbild aufgrund der Erddrehung verschiebt – dadurch sind vergleichsweise lange Belichtungszeiten möglich.[26][27][28]
29 Anglo-Australian Telescope (AAT) 3,9 m Glasspiegel
(Glaskeramik
Cer-Vit)
Anglo-Australian Telescope dome.JPG Siding-Spring-Observatorium, Australien 1165 m 1975 Größtes Teleskop Australien, bei Fertigstellung größtes Teleskop der Süd­halb­kugel. Angelehnt an die Kon­struktion des Mayall-Tele­skop verwendet es jedoch einen Spiegel aus der Glaskeramik Cer-Vit.[29] Ein 4-linsiger Korrektor erlaubt ein Sichtfeld von 2° und ergibt eine Etendue von 36.[8]
Es galt als eines der wissen­schaftlich produktivsten Teleskope.
30 Mayall 3,8 m Glasspiegel
(Quarzglas)
Kittpeakteliscope.JPG Kitt Peak, Arizona, USA 2085 m 1973 Spiegelteleskop mit einem von der Firma Corning durch Verschweißen von sechseckigen Quarzglasblöcken hergestellten Hauptspiegel,[30] ehemals zweitgrößtes Teleskop weltweit.[31]
Im Jahr 2019 wurde das Teleskop mit einem 4-linsigen Korrektor DESI ausgestattet und erreicht damit ein Sichtfeld von 3,2° und eine Etendue von 89.[32] Es wird damit für Spektroskopie genutzt.
31 United Kingdom Infrared Telescope (UKIRT) 3,8 m Glasspiegel
(Glaskeramik
Cer-Vit)
UKIRT small.png Mauna-Kea-Observatorium, Hawaii 4200 m 1979 Für Infrarotbeobachtungen. Mit einem im Vergleich zu anderen zeitgenössischen Teleskopen etwa nur ein Drittel der Stärke aufweisenden Hauptspiegel aus Cer-Vit, dessen Durchbiegung durch eine aktive Optik vermindert wurde. Der Bau erfolgte durch die Firma Sir Howard Grubb, Parsons and Co. Die Etendue von 2,4 wurde im Infrarotbereich erst 2009 von VISTA übertroffen.
32 AEOS 3,7 m Glasspiegel
(Glaskeramik
Zerodur)
AEOS3 lg.jpg AMOS, Haleakalā, Maui (Hawaii) 3000 m 1997 15 cm dünner Hauptspiegel aus der Glaskermik Zerodur, hergestellt von der Schott AG;[33] betrieben im Maui Space Surveillance System, überwiegend militärisch
33 3,6 m 3,6 m Glasspiegel
(Quarzglas)
3.6-m Telescope at La Silla.jpg La-Silla-Observatorium, Chile 2400 m 1977 erstes großes europäische Teleskop in der südlichen Hemisphäre. Der Hauptspiegel wurde von der Firma Corning durch Verschewißen von sechseckigen Quarzglasblöcken hergestellt und von der Firma REOSC geschliffen und poliert.
34 Canada-France-Hawaii Telescope (CFHT) 3,6 m Glasspiegel
(Glaskeramik
Cer-Vit)
Canada-France-Hawaii-Telescope-dome.jpeg Mauna-Kea-Observatorium, Hawaii 4200 m 1979 Mit den Anfang der 2000er Jahren im Primärfokus installierten Kameras mit weitem Sichtfeld für sichtbares und Infrarotlicht konnten die hervorragenden Beobachtungsbedingungen am Mauna Kea beispielsweise genutzt werden, um umfangreiche Durchmusterungen durchzuführen, von der Suche nach Braunen Zwergen, der Untersuchung der nahgelegenen Andromedagalaxie, des Virgo-Galaxienhaufens bis hin zur Suche nach entfernten Galaxien, den Quasaren.[34][35]
35 Telescopio Nazionale Galileo (TNG) 3,6 m Glasspiegel
(Glaskeramik
Zerodur)
Tng 2001.jpg Roque de los Muchachos, La Palma, Kanarische Inseln 2396 m 1997 [7]
36 Devasthal Optical Telescope 3,6 m Glasspiegel
(Glaskeramik
Zerodur)
Devasthal Building.tiff Observatorium Devasthal, Indien 2450 m 2015 Eines der größten Teleskope Asiens – die Position des großen Teleskopes in einem Längengradbereich, in dem sich kaum andere Teleskope befinden, prädestiniert es für die Untersuchung kurzzeitiger Phänomene am dortigen Nachthimmel, wie in der Asteroseismologie, bei Gamma Ray Bursts oder bei Supernovae.[36][7]
37 Calar Alto 3.5 3,5 m Glasspiegel
(Glaskeramik
Zerodur)
Bacares09.jpg Calar-Alto-Observatorium, Spanien 2168 m 1984 Größtes Teleskop in Kontinental-Europa. Spiegelteleskop, dessen Hauptspiegel aus der damals neuen Glaskeramik Zerodur der Schott AG hergestellt und von der Zeiss AG gefertigt wurde.[37]
38 New Technology Telescope (NTT) 3,5 m Glasspiegel
(Glaskeramik
Zerodur)
The NTT Enclosure.jpg La-Silla-Observatorium, Chile 2400 m 1989 Erstes Teleskop mit aktiver Optik, wodurch ein 24 cm dünner und leichter, meniskusförmiger Hauptspiegel realiert werden konnte; hergestellt von der Schott AG aus der Glaskeramik Zerodur.
Mit dem Spiegel­tele­skop gelang eine der ersten Beobachtungen einzelner Sterne im Zentrum der Milchstraße und damit die Entdeckung des dortigen super­massiven Schwarzen Lochs.[38]
39 Astrophysical Research Consortium (ARC) 3,5 m Glasspiegel
(Borsilikatglas
Ohara E6)
D70050914 15 ApolloLLR.jpg Apache-Point-Observatorium, New Mexico, USA 2788 m 1994 Der Spiegel des Teleskops wurde von dem Richard F. Caris Mirror Laboratory hergestellt und bereits während des Gusses durch langsame Rotation der Form parabolisiert.[39] Durch das damit mögliche große Öffnungsverhältnis f/1,75 konnte eine vergleichsweise kompakte Bauweise, geringe Masse und niedrigere Kosten erreicht werden.[40]
40 WIYN 3,5 m Glasspiegel
(Borsilikatglas
Ohara E6)
Dome of the 3.5m WIYN telescope.jpg Kitt Peak, Arizona, USA 2085 m 1994 Der Spiegel des Teleskops wurde von dem Richard F. Caris Mirror Laboratory hergestellt und bereits während des Gusses durch langsame Rotation der Form parabolisiert.[6] Durch das damit mögliche große Öffnungsverhältnis f/1,75 konnte eine vergleichsweise kompakte Bauweise, geringe Masse und niedrigere Kosten erreicht werden.[41]
Ein 2-linsiger Korrektor erlaubt ein Sichtfeld von 1,4° und ergibt eine Etendue von 12.[8]
41 Starfire-Optical-Range-Teleskope 3,5 m Glasspiegel
(Borsilikatglas
Ohara E6)
Big3 5mtele.png Kirtland AFB, New Mexico, USA 1600 m 1994 Der Spiegel des Teleskops wurde von dem Richard F. Caris Mirror Laboratory hergestellt und bereits während des Gusses durch langsame Rotation der Form parabolisiert.[6] Militärisch genutzt.
42 Herschel-Weltraumteleskop 3,5 m Siliziumkarbid
(gesintert,
Spiegelschicht
aus Aluminium)
Herschel Space Observatory.jpg Lagrangepunkt L2 1,5 Mio. km 2009 Spiegelteleskop, leichtgewichtiger Hauptspiegel aus Siliziumkarbid, hergestellt von der Firma Boostec durch das Verbinden von 12 Segmenten.[42]

Zur Beobachtung im fernen Infrarot, Gesamtbudget 1,1 Milliarden Euro. Nach dem plangemäßen Verbrauch des Heliumvorrats zur erforderlichen Kühlung im Jahr 2013 abgeschaltet.

43 Space Surveillance Telescope (SST) 3,5 m The Space Surveillance Telescope program DARPA.jpg White Sands Missile Range, New Mexico, USA 1199 m 2011 Großes Sichtfeld von 3,5°, das durch 3 Spiegel gefolgt von einem mehrlinsigem Korrektor erreicht wird. Das Teleskop hat damit eine Etendue von 53.[8]
Seit 2016 in Australien stationiert
44 INO340 3,4 m Glasspiegel
(Glaskeramik
Zerodur)
INO340.png Berg Gargash, Provinz Isfahan, Iran 3600 m 2022 Das Ritchey–Chrétien-Spiegelteleskop ist das größte Teleskop Vorderasiens
45 Shane 3,0 m Glasspiegel
(Pyrex)
Shane dome.JPG Lick-Observatorium, Mount Hamilton, USA 1300 m 1959 Ehemals weltweit zweitgrößtes Teleskop, nur von dem Hale-Teleskop übertroffen. Der Rohling des Spiegelteleskops wurde von Corning zur Erprobung des Herstellungsverfahrens des Hale-Spiegels gefertigt und gleicht diesem im verrippten Aufbau und dem Material Pyrex. Im Jahr 2004 wurde es mit einer adaptiven Optik und einem Laserleitstern ausgerüstet.[43]
46 NASA IRTF 3,0 m Glasspiegel NASA IRTF.JPG Mauna-Kea-Observatorium, Hawaii 4200 m 1979 Für Infrarotbeobachtungen. Ein Großteil der Beobachtungen dienten der Unterstützung von Raumsonden der Nasa, bspw. den Fly-bys von Voyager 1 und Voyager 2, Beobachtungen von Saturn und dem Neptunmond Triton für die Cassini-Mission, sowie des Jupiter für die Juno-Mission. Die guten Infrarotbeobachtungsmöglichkeiten durch die Höhe des Standorts werden aber auch für eine Vielzahl anderer Untersuchungen genutzt.[44][45]
47 NASA-LMT 3,0 m Metallspiegel
(Quecksilber,
flüssig, rotierend)
Cloudcroft Observatory.jpg Sacramento Peak, New Mexico, USA 2751 m 1995 Zenitteleskop, Betrieb bis 2002. Den Primärspiegel bildet flüssiges Quecksilber in einer waagrechte gleichmäßig rotierenden Schale, so dass es durch Zusammenspiel von Zentrifugalkraft und Gewichtskraft eine nahezu perfekte auf den Zenith ausgerichtete Parabelform erhält. Die Kosten des Teleskops liegen durch dieses Konstruktionsprinzip bei etwa 10 % derer eines Glasspiegels.[46]
Das Teleskop wurde von der NASA zur Detektion für Satelliten gefährlichem Weltraumschrott genutzt. Ein weiteres Einsatzgebiet war die Himmelsdurchmusterung nach Galaxien.
48 Infrared Spatial Interferometer 2,86 m Mount-Wilson-Observatorium 1742 m 2003 Interferometer, 3 × 65″, mittleres Infrarot, interferometrische Basislänge bis zu 70 m
49 Harlan Smith 2,7 m Glasspiegel
(Quarzglas)
107-inch at dusk.JPG McDonald Observatory, Texas, USA 2104 m 1969 Der Hauptspiegel des Spiegelteleskops wurde von der Firma Corning durch Verschweißen von sechseckingen Quarzglasblöcken hergestellt[47]
50 UBC-Laval LMT 2,65 m Metallspiegel
(Quecksilber,
flüssig, rotierend)
Vancouver, Kanada 1994 Flüssiger Spiegel, Zenithteleskop[48][49][50][51]
51 BAO 2,6 m Glasspiegel
(Glaskeramik
Sitall)
Byurakan 2.jpg Byurakan-Observatorium, Armenien 1500 m 1976 Größtes Teleskop Armeniens.
52 Shajn 2,64 m Glasspiegel
(Glaskeramik
Sitall ?)
Зеркальный телескоп Шайна. Общий вид.jpg Krim-Observatorium, Sowjetunion/Ukraine 0560 m 1961 Ehmals größtes Teleskop außerhalb der USA, drittgrößtes weltweit. Gegenwärtig größtes Teleskop der Ukraine[52]
53 VST 2,61 m Glasspiegel
(Glaskeramik
Sitall)
Tel view1.jpg Paranal-Observatorium, Chile 2635 m 2011 großes Sichtfeld von 1,5° durch eine modifizierte Ritchey-Chrétien-Spiegelanordnung gefolgt von einem 4-linsigen Korrektor; damit eine Etendue von 6,8[53][54][8]
54 JST/T250 2,55 m Glasspiegel
(Glaskeramik
Zerodur)
Observatorio Astrofísico de Javalambre (OAJ), El Pico del Buitre, Teruel, Spanien 1957 m 2016 Großes Sichtfeld von 3°, durch eine Cassegrain-Spiegelanordnung gefolgt von einem 3-linsigem Korrektor; damit eine Etendue von 27.[55][56][8]
55 Hooker-Teleskop 2,5 m Glasspiegel 100inchHooker.jpg Mount-Wilson-Observatorium, Kalifornien, USA 1917 bis 1949 größtes Teleskop, der Glasspiegel wurde von der Firma Saint-Gobain gegossen. Mit dem Spiegel­teleskop gelang es Edwin Hubble, Cepheiden in dem Andromedanebel zu entdecken, damit dessen Lage – und die aller anderen Spiralnebel – als eigenständige Galaxien außerhalb der Milchstraße zu bestimmen. Mithilfe des Teleskops entdeckte er zudem einen Zusammenhang zwischen Entfernung und Rotverschiebung von Galaxien, die Hubble-Konstante.[57] Mit einem zusätzlich angebrachten Michelson-Inter­fero­meter mit 6 m Basislänge (ab 1920) konnte der Durchmesser einiger Sterne bestimmt werden.
Seit Ende des 20. Jahrhunderts aufgrund der Nähe zu Los Angeles nicht mehr wissenschaftlich genutzt, ist es das größte Teleskop in dem Besucher eigene Beobachtung tätigen können.
56 Isaac Newton 2,5 m Glasspiegel
(Glaskeramik
Zerodur)
Isaac Newton Telescope, La Palma, Spain.jpg Roque de los Muchachos, La Palma, Kanarische Inseln 2396 m 1967 Mit einem in den 1930er Jahren von der Firma Corning gefertigtem Glasrohling[58] wurde 1967 das Spiegelteleskop in Herstmonceux, Vereinigtes Königreich errichtet, ab 1984 aufgrund der besseren Wetterbedingungen in La Palma betrieben. Bei der Verlagerung wurde der anfangs 98 Zoll große Hauptspiegel auch durch einen qualitativ besseren 100 Zoll Spiegel aus der Glaskeramik Zerodur ersetzt.[59]
Mit dem Teleskop gelang 1971/2 die erste Entdeckung eines schwarzen Lochs, Cygnus X-1.[58]
57 Nordic Optical Telescope 2,5 m Glasspiegel
(Glaskeramik
Zerodur)
Nordic Optical Telescope La Palma.jpg Roque de los Muchachos, La Palma, Kanarische Inseln 2396 m 1988 Ursprünglich finanziert von einer Gruppe nordeuropäischer Länder, um einen Zugang zu besseren Beobachtungsmöglichkeiten zu sichern. Durch den zwischenzeitlichen Beitritt vieler dieser Länder zur ESO und der Verfügbarkeit deren Observatorien wird das Teleskop nun noch für spezielle Aufgaben eingesetzt.[60]
58 du Pont 2,5 m Glasspiegel
(Quarzglas)
Du Pont Las Campanas.jpg Las-Campanas-Observatorium, Chile 2380 m 1977 Das Teleskop wurde für verschiedenartige Beobachtungen entworfen, da seinerzeit keine weiteren, spezialisierten Teleskope für das Observatorium geplant waren. Ein großes Sichtfeld von 2,1° wurde dabei durch eine modifizierte Ritchey-Chrétien-Spiegelanordnung in Kombination mit einem 2-linsigem Gascoigne-Korrektor erreicht.[61] Der Hauptspiegel des Spiegelteleskops wurde von der Firma Corning aus Quarzglas hergestellt.
59 Sloan Digital Sky Survey 2,5 m Glasspiegel
(Borsilikatglas
Ohara E6)
SDSS (Crop of Apache-0110).JPG Apache-Point-Observatorium, New Mexico, USA 2788 m 1998 Ein großes Sichtfeld von 3° für Himmelsdurchmusterungen wurde dabei durch eine modifizierte Ritchey-Chrétien-Spiegelanordnung in Kombination mit einem 2-linsigem Korrektor erreicht – und damit eine Etendue von 28.[8]
60 Stratospheric Observatory For Infrared Astronomy (SOFIA) 2,5 m Glasspiegel
(Glaskeramik
Zerodur)
SOFIA ED10-0182-01 full.jpg Stratosphäre 14 km 2010 Für Infrarotbeobachtungen, flugzeuggetragen, weitgehend ungestört von der atmosphärischen Absorption. Das Trägerflugzeug ist eine modifiziert Boeing 747, die Kosten betrugen 330 Millionen USD.

Aufgrund der hohen jährlichen Kosten von 85 Millionen USD wurde das Programm 2022 beendet.

61 2,5-m-Teleskop 2,5 m Glasspiegel
(Glaskeramik
Zerodur)
Кавказская Горная обсерватория ГАИШ МГУ 2013-01.jpg Kawkasskaja gornaja obserwatorija GAISCH MGU, Russland 2112 m 2014 Für das Spiegelteleskop nach Ritchey-Chrétien wurde von der Firma REOSC der Primärspiegel aus Zerodur, der Sekundärspiegel aus Quarzglas, ein optionaler Nasmyth-Spiegel aus Sitall und ein optionaler 3-linsiger Wynne-Korrektor wiederum aus Quarzglas geschliffen. Letzterer ermöglicht ein Sichtfeld von 40 Bogenminuten.[62]
62 Lijiang Teleskop 2,45 m Glasspiegel
(Glaskeramik
Zerodur)
Gaomeigu, Astronomisches Observatorium Yunnan, China 3193 m 2007 Das als Ritchey-Chrétien-Spiegelteleskop ausgeführte Instrument war ehemals größtes Teleskop Ostasiens.[63]
63 CHARA-Array 2,45 m Glasspiegel
(Glaskeramik
Sitall)
CHARA 1497.jpg Mount-Wilson-Observatorium, Kalifornien, USA 1742 m 2002 Interferometer, 6 × 1 m, interferometrische Basislänge 331 m.[64] Ab dem Jahr 2005 gelangen Abbildungen von Oberflächen entfernter Sterne.
64 Hiltner 2,4 m Glasspiegel
(Glaskeramik
Cer-Vit)
MDM Hiltner Telescope.jpg Kitt Peak, Arizona, USA 2095 m 1986 Ritchey-Chrétien-Spiegelteleskop[65]
65 Hubble Space Telescope 2,4 m Glasspiegel
(Glas ULE)
HST-SM4.jpeg Orbit 558.000 m 1990 Als Satellit außerhalb der Atmosphäre ungestört von deren Unruhe und Licht­absorption für hohe Winkel­auflösungen auch im Ultraviolett- und Infrarotspektralbereich genutzt. Der Hauptspiegel wurde aus der Glas ULE hergestellt. Einhergehend mit der für Weltraum­oberservatorien sehr langen intensiven Betriebszeit von über 30 Jahren und der zwischen­zeitlichen Reparaturen und Aufrüstung mit weiter­entwickelten Instrumenten sind Kosten von über 10 Milliarden USD.[66]
66 2,4-m-Teleskop 2,4 m Glasspiegel
(Glas ULE)
Magdalena Observatory.JPG Magdalena-Ridge-Observatorium, USA 3180 m 2008 Der Primärspiegel des Teleskops war für einen Satelliten hergestellt worden, wurde dann jedoch dem Observatorium gestiftet.[67]
67 Thai National Telescope Projekt 2,4 m Glasspiegel 2.4m TNT dome.jpg Doi Inthanon, Thailand 2457 m[68] 2012 Größtes Teleskop Südostasiens. Ritchey–Chrétien-Spiegelteleskop, der Primärspiegel wurde von LZOS gefertigt.
68 Automated Planet Finder 2,4 m Glasspiegel
(Glaskeramik
Sitall)
Automated Planet Finder Dome.JPG Lick-Observatorium, USA 1280 m 2013 Ein klassisches automatisiertes Cassegrain-Teleskop, das mit einem hochauflösenden Spektrographen von Exoplaneten hervorgerufene Bewegungen des Zentralsterns durch den Dopplereffekt detektieren kann.[69]
69 Vainu-Bappu-Teleskop 2,34 m Glasspiegel
(Glaskeramik
Zerodur)
93-inch telescope seen from the 40-inch telescope at Vainu Bappu Observatory.JPG Vainu-Bappu-Observatorium, Kavalur, Indien 0700 m 1986 Ehemals größtes Teleskop Südasiens.
70 Wyoming Infrared Observatory (WIRO) 2,3 m Glasspiegel
(Glaskeramik
Cer-Vit)
WyomingInfraRedObservatory.jpg Laramie (Wyoming), USA 2948 m 1977 Das speziell für Infrarotastronomie ausgelegte Teleskop war für rund 2 Jahre das größte derartige Instrument, und wurde dann von der NASA IRTF und dem UKIRT übertroffen. Durch einen vergleichsweise dünnen Hauptspiegel war es sehr kostengünstig.
71 ANU 2,3 m Glasspiegel
(Glaskeramik
Cer-Vit)
Siding Spring 2.3 m Telescope.png Siding-Spring-Observatorium, Australien 1165 m 1984
72 Aristarchos 2,3 m Glasspiegel
(Glaskeramik
Sitall)
Aristarchos telescope.jpg Aroania, Griechenland 2340 m 2004 Das Ritchey-Chrétien-Teleskop wurde von der Carl Zeiss AG gebaut.[70][71]
73 Bok 2,3 m Glasspiegel
(Quarzglas)
Bokscope.jpg Kitt Peak, Arizona, USA 2095 m 1969 Das Teleskop wurde im Jahr 2003 mit einem 4-linsigem Korrektor ausgestattet, womit es ein Sichtfeld von 1,1° × 1,1 ° und eine Etendue von 3,3 erreicht.[72]
74 MPG/ESO-2,2-m-Teleskop 2,2 m Glasspiegel
(Glaskeramik
Zerodur)
Lso-eso-mpg-2p2-96.jpg La-Silla-Observatorium, Chile 2400 m 1984 Das Ritchey-Chrétien-Teleskop ist seit 1999 mit einem Korrektor und einer dazu passenden CCD-Kamera Wide Field Imager ausgestattet und kann damit ein Bildfeld von 0,6° × 0,6° aufzeichnen.
75 MPI-CAHA 2,2 m Glasspiegel
(Glaskeramik
Zerodur)
Bacares10.jpg Calar-Alto-Observatorium, Spanien 2168 m 1979 Erstes Teleskop mit einem Zerodur-Spiegel.[73] Ritchey-Chrétien-Teleskop, mit einem Korrektor lässt sich das Sichtfeld auf 1,1° erweitern.[74]
76 UH 2,2 m Glasspiegel
(Quarzglas)
UH88 at sunset.jpg Mauna-Kea-Observatorium, Hawaii 4200 m 1970 Der Hauptspiegel des Spiegelteleskops wurde von Firma Corning aus Quarzglas hergestellt.[75]
77 2,16-m-Teleskop 2,16 m Glasspiegel
(Glaskeramik
Cer-Vit)
216望远镜 - panoramio.jpg Xinglong Station, China 0960 m 1989 Das Ritchey-Chrétien-Spiegelteleskop war ehemals das größte Teleskop in Ostasien.[76][77]
78 Jorge Sahade Teleskop 2,15 m Glasspiegel Telescopio del Complejo astronomico el Leoncito-San Juan-ARG.JPG Astronomische Einrichtung Leoncito, Argentinien 2552 m 1987
79 Grand Interféromètre à 2 Télescopes (GI2T) 2,15 m Strange building of the Interferometer (by the Hungarian architect Antti Lovag) - panoramio.jpg Observatoire de Calern, Frankreich 1270 m 1985 Interferometer aus zwei 1,52-m-Spiegeln, Basislänge bis 65 m
80 INAOE 2,12 m Observatorio Astrofísico Guillermo Haro.jpg Astrophysikalisches Observatorium Guillermo Haro, Mexiko 2480 m 1987
81 UNAM 2,12 m Glasspiegel
(Glaskeramik
Cer-Vit)
2.12m Telescope-SanPedroMartir Observatory-BajaCalifornia-Mexico.jpg Sierra San Pedro Mártir, Mexiko 2830 m 1979 [78]
82 KPNO 2,1 m 2,1 m Glasspiegel
(Pyrex)
KPNO 2.1m (Crop from At Kitt Peak National Observatory).jpg Kitt Peak, Arizona, USA 2095 m 1964 Mit dem Ritchey-Chrétien-Spiegelteleskop gelang 1979 erstmal die Boebachtung einer Gravitationslinse.[79][80]
83 Otto Struve Telescope 2,08 m Glasspiegel
(Pyrex)
Otto Struve Telescope.jpg McDonald Observatory, Texas, USA 2104 m 1939 Bei Fertigstellung weltweit zweitgrößtes Teleskop. Für den Teleskopspiegel wurde von Corning das Glas Pyrex verwendet.

Mit dem Teleskop gelang unter anderem die Entdeckung von Nereid, Neptuns zweitgrößtem Mond, und einem Uranus-Mond, Miranda, wie auch die Entdeckung von Kohlendioxid in der Mars-Atmosphäre und Methan in der Atmosphäre des Saturnmondes Titan.

84 Teleskop Bernard Lyot 2,06 m Téléscope Bernard Lyot.jpg Pic-du-Midi-Observatorium, Pyrenäen, Frankreich 2877 m 1980 größtes Teleskop in Frankreich
85 T13 2,0 m AST 2,06 m Glasspiegel
(Glaskeramik
Cer-Vit)
Fairborn Observatory, Washington Camp, Arizona (TSU AAG) 1800 m[81] 2003 [82]
86 Hanle 2,01 m Glasspiegel
(Glas ULE)
Hanle observatory.jpg Indian Astronomical Observatory, Indien 4500 m 2000 Teleskop im West-Himalaya[83]
87 Alfred-Jensch-Teleskop 2,0 m Glasspiegel
(Glas Schott ZK7,
Glaskeramik
Sitall ab 1986)
bedarfsweise mit
Schmidt-Platte
Karl-Schwarzschild-Observatorium.jpg Thüringer Landessternwarte Tautenburg, Deutschland 0342 m 1960 D = 1,38 m als Schmidt-Teleskop, größtes Teleskop auf deutschem Boden (seit 2012 zusammen mit dem Fraunhofer-Teleskop), größtes Schmidt-Teleskop, sehr großes Sichtfeld. Der Hauptspiegel wurde in den Jahren 1985-1986 gegen einen verbesserten aus der Glaskeramik Sitall getauscht.[84][85]
88 Carl Zeiss, Jena 2,0 m 2-m Telescope3, Ondřejov Astronomical.jpg Sternwarte Ondřejov, Tschechische Republik 0500 m 1967
89 Carl Zeiss, Jena 2,0 m Şamaxı Astrofizika Rəsədxanası.jpg Astrophysikalisches Observatorium Şamaxı, Republik Aserbaidschan 1435 m 1966
90 Carl Zeiss, Jena 2,0 m Rozhen dome.jpg Rožen-Observatorium, Bulgarien 1759 m 1980
91 Zeiss-2000 2,0 m Astronomical Observatory Terskol crop.jpg Hauptobservatorium der Nationalen Akademie der Wissenschaften der Ukraine, Terskol 3100 m 1995 [86]
92 Multicolor Active Galactic Nuclei Monitoring (MAGNUM) 2,0 m Glasspiegel
(Glas ULE)
MAGNUM, crop of Haleakala Observatory.jpg Haleakalā, Hawaii 3000 m 2001 Eine dediziertes Teleskop zur Untersucheung aktiver Galaxienkerne, betrieben bis 2008 (Die Teleskopkuppel wurde dann für Pan-STARRS2 genutzt).[87][88]
93 Faulkes Telescope North 2,0 m Glasspiegel
(Glaskeramik
Sitall)
LCOGT 2m.JPG Haleakalā, Hawaii 3000 m 2003 [89][90]
94 Faulkes Telescope South 2,0 m Glasspiegel
(Glaskeramik
Sitall)
LCOGT 2m.JPG Siding-Spring-Observatorium, Australien 1165 m 2004 [91]
95 Liverpool 2,0 m Glasspiegel
(Glaskeramik
Sitall)
LCOGT 2m.JPG Roque de los Muchachos 2396 m 2004 [92][93]
96 IUCAA telescope 2,0 m Glasspiegel
(Glaskeramik
Sitall)
Girawali Observatory.jpg IUCAA-Girawali-Observatorium, Indien 1000 m 2006 [94]
97 Fraunhofer-Teleskop 2,0 m Glasspiegel
(Glaskeramik
Sitall)
Wendelstein Fraunhofer Reflector.jpg Observatorium Wendelstein, Deutschland 1838 m 2012 Größtes Teleskop in Deutschland (zusammen mit dem Alfred-Jensch-Teleskop)[95][96]
98 OHP 1,93 1,93 m Glasspiegel OHP telescope193.JPG Observatoire de Haute-Provence, Frankreich 0650 m 1958 Das Spiegel­tele­skop wurde von Sir Howard Grubb, Parsons and Co. hergestellt, aus dem gleichen Glas der Firma Saint Gobain wie das Hooker-Teleskop.[97]
Mit dem Teleskop gelang im Jahr 1995 die – mit einem Nobelpreis ausgezeichnete – erste Entdeckung eines Exoplaneten.
99 1,9 m Radcliffe Telescope 1,9 m Glasspiegel
(Pyrex)
South African Astronomical Observatory (sutherland aerial view) crop.jpg South African Astronomical Obs. 1760 m 1948 Das Spiegel­tele­skop wurde von Sir Howard Grubb, Parsons and Co. hergestellt. Der Guss des Spiegels aus dem Glas Pyrex gelang erst im dritten Versuch. Das Teleskop wurde zunächst am Radcliffe Observatory (Pretoria)[98] betrieben, bis städtische Nachtbeleuchtung einen Umzug 1974 erzwangen.[99]
100 188 cm telescope 1,88 m Glasspiegel
(Pyrex)
NOAO 188cm telescope.jpg Okayama Astrophysical Observatory, Japan 0372 m 1960 Das Spiegel­tele­skop wurde von Sir Howard Grubb, Parsons and Co. hergestellt, mit einem Hauptspiegel aus dem Glas Pyrex.[100] Größtes Teleskop in Japan (Das größte Teleskop des japanischen nationalen astronomischen Observatoriums NAOJ, Subaru, befindet sich aufgrund der sehr guten atmosphärischen Bedingungen auf dem Mauna Kea).
101 DDO 1,88 m 1,88 m Glasspiegel
(Pyrex)
Dunlap Observatory.jpg David Dunlap Observatory, Ontario 0238 m 1935 Größtes aktive Teleskop Kanadas und einst zweit­größtes Teleskop der Welt. Das Spiegel­tele­skop wurde von Sir Howard Grubb, Parsons and Co. hergestellt mit einem Spiegel aus dem – damals für Großteleskope neuartigen – Glas Pyrex und ist das erste einer Familie ähnlicher Tele­skope in Südafrika, Australien, Frankreich, Japan und Ägypten.[101] Es wurde unter anderem für die Distanz­bestimmung von Kugelsternhaufen, zur Erforschung von Zwerggalaxien, und zur Klärung der Natur von Cygnus X-1 als Schwarzes Loch eingesetzt. Beeinträchtigt durch die Nähe zu Toronto wird es immer selten für wissen­schaftliche Beobachtungen genutzt, jedoch werden Interessierten Führungen angeboten.
102 74″ reflector 1,88 m Glasspiegel Mount Stromlo Observatory-1 (37590072245).jpg Mount Stromlo Observatory, Australien 0770 m 1955 Das Spiegel­tele­skop wurde von Sir Howard Grubb, Parsons and Co. hergestellt. Es wurde 2003 bei einem Waldbrand zerstört.
103 Kottamia telescope 1,88 m 1,88 m Glasspiegel
(Duran,
Zerodur ab 1997)
Kottamia Astronomical Observatory, Ägypten 0476 m 1964 Größtes Teleskop Kontinental-Nordafrikas. Das Spiegel­tele­skop wurde von Sir Howard Grubb, Parsons and Co. mit einem Hauptspiegel aus Duran-Glas gefertigt, der aufgrund einer Beschädigung im Jahr 1989[102] dann von Zeiss durch einen Spiegel aus Zerodur ersetzt wurde.[103]
104 1,8 m Ritchey Chretien reflector 1,84 m Glasspiegel
(Glaskeramik
Zerodur)
Bohyunsan Optical Astronomy Observatory, Korea 1127 m 1996 [104]
105 Vatican Advanced Technology Telescope (VATT) 1,83 m Glasspiegel
(Borsilikatglas
Ohara E6)
VaticanObservatory VATT.jpg Mount Graham, Arizona 3178 m 1993 Erstes Teleskop mit einem Spiegel von dem Richard F. Caris Mirror Laboratory hergestellten Spiegel, der bereits während des Gusses durch langsame Rotation der Form parabolisiert wurde.[6][105]
106 72-Inch Perkins Telescope 1,83 m Glasspiegel
(Duran, ab 1965)
Lowell Observatory, Anderson Mesa Station USA 2163 m 1964 Der ursprüngliche im Jahr 1934 gefertigte Spiegel, wurde 1965 durch einen moderneren aus Duran ersetzt.
107 Plaskett telescope 1,83 m Glasspiegel Dominion Astrophysical Observatory Telescope (crop).jpg Dominion Astrophysical Observatory, Kanada 0238 m 1918 Spiegelteleskop, ehemals weltweit zweitgrößtes Teleskop (nach dem 2,5 m durchmessendem Hooker-Teleskop)
108 Leviathan 1,83 m Metallspiegel Telescopio Leviatano Birr.JPG Birr (Irland) 0075 m 1845 1908 demontiert, 1999 restauriert. Metallspiegel
Bereits 1845 gelang damit die Entdeckung der Spiralstruktur in einigen Nebeln, die später dann als Spiralgalaxien erkannt wurden
109 Copernico 182 cm 1,82 m Glasspiegel
(Duran)
StazioneOsservativaEkar.jpg Osservatorio Astrofisico di Asiago, Italien 1045 m 1976 [106]
110 CCD Transit Instrument 1,80 m Glasspiegel
(Glas ULE)
Kitt Peak 2095 m 1984 Paul-Baker, bis 1992 in Betrieb[107][108]
111 Sandy Cross Telescope[109] 1,80 m Glasspiegel
(Borsilikatglas)
Rothney Astrophysical Observatory from Cowboy Trail crop.jpg Rothney Astrophysical Observatory, Kanada 1269 m 1996 Anfangs (1987) mit einem Metallspiegel mit 1,5 m Durchmesser ausgestattet, wurde dieser 1996 durch einen Glasspiegel mit 1,8 m Durchmesser ersetzt. Der Glasspiegel war ein erstes Muster des späteren Richard F. Caris Mirror Laboratory, bereits mit Bienenwabenstruktur, aber noch ohne Rotationsguss.[110][111][112]
112 Spacewatch 1.8-m Telescope 1,8 m Glasspiegel
(Quarzglas)
Spacewatch 1.8m telescope.jpg Kitt Peak National Observatory, USA 2095 m 2001 Der Hauptspiegel entstammt dem Multiple-Mirror Telescope.[113][114]
113 VLT Auxiliary Telescope 1.8 1,8 m Glasspiegel
(Glaskeramik
Zerodur)
The ATs april2006.jpg Paranal-Observatorium, Chile 2635 m 2006
114 VLT Auxiliary Telescope 1.8 1,8 m Glasspiegel
(Glaskeramik
Zerodur)
The ATs april2006.jpg Paranal-Observatorium, Chile 2635 m 2006
115 VLT Auxiliary Telescope 1.8 1,8 m Glasspiegel
(Glaskeramik
Zerodur)
The ATs april2006.jpg Paranal-Observatorium, Chile 2635 m 2006
116 VLT Auxiliary Telescope 1.8 1,8 m Glasspiegel
(Glaskeramik
Zerodur)
The ATs april2006.jpg Paranal-Observatorium, Chile 2635 m 2006
117 Pan-STARRS 1 1,8 m Glasspiegel
(Glas ULE)
Pan-STARRS, crop of Haleakala Observatory 2017.jpg Haleakalā 3000 m 2006 Das Teleskop hat ein großes Sichtfeld von 3° durch die Kombination von 2 Spiegeln ähnlich einem Ritchey-Chrétien-Teleskop, gefolgt von einem 3-linsigen Korrektor. Es hat so eine Etendue von 13.[115][116]
118 Pan-STARRS 2 1,8 m Glasspiegel
(Glas ULE)
Pan-STARRS, crop of Haleakala Observatory 2017.jpg Haleakalā 3000 m 2018 Das Teleskop hat ein großes Sichtfeld von 3° durch die Kombination von 2 Spiegeln ähnlich einem Ritchey-Chrétien-Teleskop, gefolgt von einem 3-linsigen Korrektor. Es hat so eine Etendue von 13.[117][115]
119 Microlensing Observations in Astrophysics 1,8 m Dome for MOA telescope.jpg Mount John University Observatory, Neuseeland 1029 m 2004
120 1,8-m-Teleskop 1,8 m Astronomisches Observatorium Yunnan, China 3193 m 2009
121 KH-12[118] 1,8 m[119] Glasspiegel[118] Utah, USA 2013 Größtes Amateurteleskop, größtes Dobson-Teleskop. Der Spiegel wurde für einen Aufklärungssatelliten gefertigt, aber bei der Produktion leicht beschädigt und dann durch eine Auktion an den Konstrukteur des Teleskops veräußert.[118]
122 China Large Solar Telescope[120] 1,8 m Glasspiegel
(Quarzglas)
China 2020 [121] Der leichtgewichtige, hierfür rückseitig mit einer Bienenwabenstruktur versehene Spiegel kann die Sonnenwärme aktiv abführen und die Temperatur kann bis auf weniger als ein Grad genau eingestellte werden.
123 69-inch Perkins Telescope[122] 1,75 m Glasspiegel
(Duran, ab 1964)
Perkins Observatory.JPG Perkins Observatory, Ohio, USA 0280 m 1931 Seinerzeit drittgrößtes Teleskop weltweit.[123] 1961 zum Lowell-Observatorium verlegt, 1964 wurde der Hauptspiegel durch einen 72 Zoll-Spiegel aus Duranglas ersetzt
124 1,65 m-Teleskop 1,65 m Glasspiegel
(Glaskeramik
Sitall)
Molėtai Astronomical Observatory.JPG Astronomisches Observatorium Molėtai, Litauen 0220 m 1991
125 McMath-Pierce Solar Telescope 1,61 m Aluminium
(verspiegelt)
McMath-Pierce Solar Telescope.jpg Kitt Peak National Observatory, Arizona, USA 2095 m 1962 Zur Sonnenbeobachtung. Der Strahlengang des unbeweglichen Teleskops wird mittels eines Heliostats ausgerichtet. Der Aluminumspiegelträger ist mit besser polierbarem Nickel beschichtet, welches dann mit einer dünne Spiegelschicht wiederum aus Aluminium versehen ist.[124]
126 BBO NST 1,6 m Glasspiegel
(Glaskeramik
Zerodur)
Goode Solar Telescope.jpg Big Bear Solar Observatory, California, USA 2067 m 2009 Zur Sonnenbeobachtung. Eine Georgy-Teleskop in Off-Axis Anordnung, wodurch der Sekundärspiegel den Primärspiegel nicht verdeckt.
127 AZT-33[125] 1,6 m Павильон телескопа АЗТ-33ИК.jpg Sajan-Sonnenobservatorium, Sibirien, Russland 0832 m 1981
128 AZT-33VM 1,6 m Sajan-Sonnenobservatorium, Sibirien, Russland 0832 m 2016 Ein modifiziertes Ritchey-Chrétien-Spiegelteleskop, dem zwei Linsen zwischen Sekundärspiegel und Fokusebene hinzugefügt wurden, wodurch es eine einen Sichtfeld von 2,8° aufweist. Durch eine Bildebene vor dem Hauptspiegel, konnte zudem der Sekundärspiegel releativ klein, mit wenig Obstruktion ausgeführt werden.[126][127][128]
129 1.6 m Perkin Elmer[129] 1,6 m Cupula LNA 1.6m.jpg Observatório do Pico dos Dias, Minas Gerais, Brasilien 1870 m 1981
130 Observatoire du Mont-Mégantic 1,6 m 20040720 OMM.jpg Observatoire du Mont Mégantic, Québec, Kanada 1114 m 1978
131 KMT-CTIO 1,6 m Glasspiegel
(Glaskeramik
Zerodur)
KMTNet 1.6-meter Telescope - DSC-4199-CC (cropped).jpg Cerro Tololo Inter-American Observatory, Cerro Pachón, Chile 2740 m 2015 Die Teleskope KMT-CTIO, KMT-SAAO und KMT-SSO bilden das KMTNet: Durch ihre Standorte rund um den Globus kann eine Himmelsregion trotz der Erddrehung durchgehend beobachtet werden. Die Spiegelteleskope sind mit einem 4-linsigen Korrektor und einer 340 Megapixel-CCD-Kamera im Primärfokus zur Beobachtung einer Himmelsregion von 2° × 2° ausgestattet.

Das primäre wissenschaftliche Ziel ist die Entdeckung von Exoplaneten durch von diesen hervorgerufenes Microlensing.[130]

132 KMT-SAAO 1,6 m Glasspiegel
(Glaskeramik
Zerodur)
KMTNet 1.6-meter Telescope - DSC-4199-CC (cropped).jpg South African Astronomical Observatory, Südafrika 1760 m 2015
133 KMT-SSO 1,6 m Glasspiegel
(Glaskeramik
Zerodur)
KMTNet 1.6-meter Telescope - DSC-4199-CC (cropped).jpg Siding-Spring-Observatorium, Australien 1165 m 2015
134 1.6-m Pirka Telescope 1,6 m Glasspiegel
(Glaskeramik
Sitall)
Nayoro Observatory, Hokkaido University, Japan 2010 [131][132]
135 Maui Space Surveillance System 1.6 m Telescope 1,57 m Haleakala Observatory 1.6 Meter telescope.jpg Haleakalā, Hawaii 3000 m 1966
136 1,56-m-Teleskop 1,56 m Observatory and She Shan Basilica 20050410.jpg Astronomisches Observatorium Shanghai (Sheshan), China 0100 m 1988
137 Kaj Strand Telescope[133] 1,55 m Glasspiegel
(Quarzglas)
NOFS ksar1-55m.jpg USNO Flagstaff Station, Arizona, USA 2316 m 1964 Der geforderte, seinerzeit weltgrößte Quarzspiegel konnte augrund der gewünschten Dicke nur durch ein Laminat von 4 Scheiben von der Firma Corning erfolgreich hergestellt werden.[134]
138 61" Kuiper Telescope 1,55 m Steward Observatory, Arizona, USA 2518 m 1965 [135]
139 Oak Ridge Observatory 61" reflector[136] 1,55 m Glasspiegel
(Pyrex, ab 1936)
George R. Aggasiz Station, Harvard - 1.jpg Oak Ridge Observatory, Massachusetts, USA 0185 m 1933 Commons 60 Zoll Glasspiegel wurde 1936 durche einen 61 Zoll Spiegel aus Pyrex ersetzt.[137]
140 Estación Astrofísica de Bosque Alegre[138] 1,54 m Observatorio de Bosque Alegre.JPG Estación Astrofísica de Bosque Alegre, Argentinien 1350 m 1942 Der Bau des seinezeit größten Teleskops der Südhalbkugel wurde 1912 von Argentinien beauftragt aber erst 1942 fertiggestellt.[139]
141 Toppo Telescope No. 1 (TT1)[140] 1,537 m Osservatorio di Castelgrande.jpg Osservatorio astronomico di Castelgrande, Italien 1250 m 2008
142 A. A. Common 60 inch Telescope 1,524 m Glasspiegel London, England 1888 1905 vom Harvard College Observatory gekauft und dort errichtet
143 Harvard 60-inch Reflector[141] 1,524 m Glasspiegel The Anonymous gift of 1902 - Plate 3 - Pickering 1906.jpg Harvard College Observatory, Massachusetts, USA 0024 m 1905 1931 als 1,5-m-UFS-Boyden-Rockefeller-Reflektor nach Südafrika verlegt; der Ersatzspiegel dem Perkins Observatory geliehen und kurz darauf im Oak Ridge reflector verbaut
144 Hale 60-Inch Telescope 1,524 m Glasspiegel 60-inch Telescope.JPG Mt. Wilson Observatory, California, USA 1742 m 1908 Ehemals weltgrößtes aktives Teleskop. Mit dem Spiegelteleskop gelang es Harlow Shapley die Größe der Milchstraße und die Lage des Galak­tischen Zentrums, zuvor nahe dem Sonnen­system angenommen, anhand der Entfernung von Kugelsternhaufen zu bestimmen.[142]
145 FLWO 1.5 m Tillinghast[143] 1,52 m Glasspiegel
(Duran)
Fred-Lawrence-Whipple-Observatorium, Arizona 2606 m 1994 [144]
146 Telescopio Carlos Sánchez (TCS) 1,52 m Glasspiegel Observatorio del Teide, telescopios nocturnos, Tenerife, España, 2015 - crop 'Telescopio Carlos Sánchez'.JPG Observatorio del Teide, Kanaren, Spanien 2400 m 1971 Das Dall-Kirkham-Spiegelteleskop für Infrarotastronomie wurde von Sir Howard Grubb, Parsons and Co. gefertigt.[145] Erstes Teleskop mit einem dünnen Hauptspiegel mit einem Dicken zu Durchmesserverhältnis von 1:12.[146]
147 OHP 1,52 1,52 m Glasspiegel
(Borsilikatglas)
L'Observatoire de Haute Provence in Winter (crop).jpg Observatoire de Haute-Provence, Frankreich 0650 m 1967 Gefertigt von REOSC.[147]
148 Mt. Lemmon 60" Dahl-Kirkham Telescope[148] 1,52 m Metallspiegel,
(Aluminium)
ab 1974:
Glasspiegel
(Glaskeramik
Cer-Vit)
Steward Obs. (Mt. Lemmon), Arizona, USA 2790 m 1970 Ein Dahl-Kirkham-Spiegelteleskop, das anfangs mit einem Spiegel aus Aluminium ausgestattet war, der 1974 durch einen Spiegel aus der Glaskeramik Cer-Vit ersetzt wurde.[149]
149 Steward Observatory 60" Cassegrain Telescope[150] 1,52 m Metallspiegel
(Aluminium),
ab 1977:
Glasspiegel
(Glaskeramik
Cer-Vit)
Telescope at the Catalina Sky Survey.jpg Steward Obs. (Catalina Station Site II), Arizona, USA 2512 m 1969 ab 1972 im Mount-Lemmon-Observatorium[151]
150 OAN 1.52 m[152] 1,52 m Calar-Alto-Observatorium, Almería, Spanien 2168 m 1977 Gefertigt von REOSC.
151 ESO 1.52 m 1,52 m Glasspiegel
(Borsilikatglas)
Esopia00053teles.jpg La-Silla-Observatorium, Chile 2400 m 1968 Gefertigt von REOSC. Seit 2002 außer Betrieb. Schwesterinstrument zum OHP 1.52[153]
152 1.52 m G.D. Cassini[154] 1,52 m Glasspiegel
(Borsilikatglas)
Mount Orzale, Italien 0800 m 1976 Gefertigt von REOSC. Schwesterinstrument zum OHP 1.52 und ESO 1.52
153 Telescopio 1.5 m 1,5 m 1.5m Telescope-SanPedroMartir Observatory-BajaCalifornia-Mexico.jpg Observatorio Astronómico Nacional, Sierra de San Pedro Mártir, Mexiko 2830 m 1970
154 TIRGO[155] 1,5 m Glasspiegel
(Glaskeramik Zerodur)
Gornergrat HPS DSC03970 2 crop.jpg Hochalpine Forschungsstation Gornergrat, Schweiz 3120 m 1979 Größtes Teleskop in der Schweiz, die Optik wurde von der Firma REOSC gefertigt.[156]
Seit 2005 außer Betrieb.
155 AZT-22[157] 1,5 m AZT-22.JPG Maidanak-Observatorium, Usbekistan 2593 m 1972 Größtes Teleskop Zentralasiens neben dem AZT-20 im Obserwatorija Assy-Turgen, Kasachstan.
156 RTT150 (ex-AZT-22)[158][159] 1,5 m Glasspiegel
(Glaskeramik
Sitall)
Tübitak Ulusal Gözlemevi.jpg TUBITAK National Obs., Türkei 2450 m 1997 [160]
157 AZT-12[161] 1,5 m Tartu Observatoorium.jpg Tartu Observatoorium, Estland 0077 m 1976
158 Danish 1,5 m 1,5 m Glasspiegel
(Glaskeramik
Cer-Vit)
Esopia00052teles.jpg La-Silla-Observatorium, Chile 2400 m 1979 Hergestellt von dem Unternehmen Sir Howard Grubb, Parsons and Co. .[162]
159 Hexapod-Teleskop[163] 1,5 m Glasspiegel
(Glaskeramik
Zerodur)
Hexapod-Telescope 2006.jpg Cerro Armazones, Antofagasta Region, Chile 3064 m 2005 Die Ausrichtung des Teleskops erfolgt über einen namensgebenden Hexapod
160 OSN 1,5 m 1,5 m Glasspiegel
(Glaskeramik
V02)
OSN - Observatorio de Sierra Nevada - IAA -Telescope 1.5m.jpg Observatorio de Sierra Nevada, Granada, Spanien 2896 m 1992
161 GREGOR solar/night telescope[164] 1,5 m Glasspiegel
(Glaskeramik
Zerodur)
Solar Telescope GREGOR.jpg Observatorio del Teide, Teneriffa, Spanien 2400 m 2012 Hauptsächlich für Sonnenbeobachtungen. Der Hauptspiegel aus der Glaskeramik Zerodur kann aktiv gekühlt werden.[7]
162 SMARTS 1.5-m Telescope 1,5 m Telescopio Metro y medio.jpg Cerro Tololo Inter-American Observatory, Chile 2200 m 1968 [165]
163 Gunma Astronomical Observatory 1.5 m telescope 1,5 m 11 m dome of GAO.jpg Gunma Astronomical Observatory, Japan 0885 m 1999 [166][167]
164 1,5 m RC-Teleskop 1,5 m Glasspiegel
(Duran)
FOA innen.jpg Leopold Figl-Observatorium, Österreich 0882 m 1969 Größtes Teleskop in Österreich[168][169]
165 KANATA 1,5 m Glasspiegel
(Glas ULE)
東広島市天文台 Higashi-Hiroshima Astronomical observatory - panoramio (cropped).jpg Higashi-Hiroshima Observatory, Japan 0503 m 1994 Bis 2006 als Infrared Simulator im NAOJ, Mitaka-Campus[170]
166 1,5-m-UFS-Boyden-Rockefeller-Reflektor 1,5 m Glasspiegel Boyden Observatory, Südafrika 1372 m 1933 [171]
167 Starfire-Optical-Range-1,5-m-Teleskop 1,5 m Starfire Optical Range - crop 1.5m telescope.jpg Kirtland AFB, New Mexico, USA 1600 m 1994 militärisch
168 AZT-20[172] 1,5 m Assy-Turgen Observatory - 1.5-m telescope's dome (unfinished).jpg Obserwatorija Assy-Turgen, Kasachstan[173] 2016 Der Bau des Teleskops begann in den 1990ern, konnte jedoch aufgrund von finanziellen Schwierigkeiten in Zusammenhang mit der Auflösung der Sowjetunion[174] erst 2016 fertiggestellt werden.[175] Größtes Teleskop in Zentralasien neben dem AZT-22 im Maidanak-Observatorium, Usbekistan.
Zeiss 122 cm 1,22 m Glasspiegel Babelsberg telescope.jpg Berlin-Babelsberg, Deutschland
Krim-Observatorium, Sowjetunion/Ukraine nach 1945
1924 Seinerzeit größtes Teleskop außerhalb Nordamerikas.[176]
Als Reparation nach dem 2. Weltkrieg an die Sowjetunion übergeben.
1-Meter-Spiegel 1,00 m Glasspiegel 1-Meter-Spiegel, Sternwarte Bergedorf in Hamburg.JPG Hamburger Sternwarte, Deutschland 1911 Bis 1920 und sowie von 1946 bis 1960 war es das größte Teleskop in Deutschland, und eines der größten weltweit außerhalb der USA zusammen mit den 1,2 m Teleskopen in Paris und Melbourne und dem 1 m Teleskop in Meudon.[177] Hergestellt von der Firma Zeiss
Waltz-Teleskop 0,72 m Glasspiegel Waltz Reflector, 72 cm, Zeiss, Heidelberg (cropped).jpg Landessternwarte Heidelberg-Königstuhl, Deutschland 568 m 1906 Seinerzeit in Deutschland zweitgrößtes Teleskop und größtes Spiegelteleskop, hergestellt von der Firma Zeiss.
Es wurde 2017 mit einem Echelle-Spektrograph ausgestattet.[178]
1,25-m-Refraktor 1,25 m Achromat Great Ex Telescope Telescope.jpg Paris, Frankreich 1900 Größtes jemals gebaute Linsenteleskop. Das achromatische Linsenteleskop selbst war mit einer Länge von 57 m unbeweglich, horizontal montiert und wurde mit einem Siderostat auf ein Himmelsobjekt ausgerichtet. Nach einem einjährigen Betrieb auf der Weltausstellung 1900 wurde es abgebaut und nicht wieder genutzt.
Yerkes-Refraktor 1,02 m Achromat PSM V60 D306 The forty inch telescope of the yerkes observatory.png Yerkes-Observatorium, Wisconsin, USA 1897 größtes gegenwärtiges Linsenteleskop. Die schwierige Herstellung der Linsensenrohlinge für das achromatische Duplett gelang Édouard Mantois. Die Firma Alvan Clark & Sons schliff die Optik. Warner & Swasey Company fertigte die Montierung.
1,00 m Glasspiegel Telescoop met een diameter van één meter van het observatorium van Parijs Observatoire de Meudon - Coupole du télescope de 1m d'ouverture (titel op object), RP-F-2001-7-1379-6 (cropped).jpg Meudon, Frankreich 1891 Seinerzeit weltweit viertgrößtes Teleskop (nach dem Leviathan, Commons 5 foot und dem Great Melbourne Telescope), größtes Teleskop außerhalb des British Empire[179]
Great Lick Refractor 0,91 m Achromat Lick Observatory Refractor.jpg Lick-Observatorium, USA 1300 m 1888 Achromatisches Linsenteleskop. Die Herstellung eines der beiden Linsenrohlingen gelang der führenden Firma von Charles Feil erst nach 18 oder 30[180] Versuchen. Sie wurde dann von der Firma Alvan Clark & Sons geschliffen; die Warner & Swasey Company stellte das Teleskoprohr und die Montierung her. Um je nach Ausrichtung der Fernrohs das Okular für den Beobachter erreichbar zu machen, konnte der gesamte Boden des Observatoriums hydraulisch um 5 m in der Höhe verändert werden.[181]
Grande Lunette 0,77 m Achromat Grande Lunette Nice.jpg Observatoire de Nice, Frankreich 1888 Die Linsenrohlinge des achromatisches Linsenteleskops wurden von Édouard Mantois gegossen und von den Henry-Brüdern geschliffen. Die Teleskopmechanik wurde von Paul Ferdinand Gautier's Firma gefertigt.[3]
Repsold Refraktor 0,76 m Achromat Pulkovo 30 inch refracting telescope.jpg Pulkowo-Observatorium 1885 Achromatisches Linsenteleskop, zerstört 1944.
Die achromatische Duplettlinse wurde von der Firma Alvan Clark & Sons gefertigt, die Rohlinge von der Firma Charles Feil gegossen. Die Teleskopmechanik fertigte A. Repsold & Söhne.[182]
Großer Refraktor der Universitätssternwarte Wien 0,68 m Achromat Refraktor Wien Kerschbaum 1.jpg Wien, Österreich 00250 m 1883 11 m Brennweite, größtes Linsenfernrohr Österreichs, neuntgrößtes der Welt, gebaut von Sir Howard Grubb, Parsons and Co.
Commons 36 Zoll 0,91 m Glasspiegel Photographs of nebulae and clusters made with the Crossley reflector (IA photographsofneb00keelrich) - crop.jpg Ealing (London), England 1879 Teleskop mit Glasspiegeln, für Fotografie.[183] Durch einen Antrieb mit einem Uhrwerk und einer reibungsarme, schwimmende Lagerung der Polarachse in Quecksilber gelang eine präzise Nachführung während einer längeren Belichtung. So entstand die ausgezeichnete Fotografie des Orionnebels, in der mehr Details erkennbar waren als es durch direkte Beobachtungen möglich war. Auch die erste Aufnahme des Jupiters wurde 1879 damit angefertigt.[184]
U.S. Naval Observatory 26 inch 0,66 m Achromat US Navy 030826-N-9593R-043 Personnel at the U.S. Naval Observatory in Washington, D.C., prepare the facility's historic 26-inch refractor telescope for optical viewing of Mars.jpg U.S. Naval Observatory 1873 Das achromatisches Linsenteleskop wurde von Alvan Clark & Sons gefertigt, die erforderlichen großen Linsenrohlinge goss Chance Brothers and Company in England.[185] Mit dem Teleskop gelang 1877 die Entdeckung der Marsmonde Deimos und Phobos. Ursprünglich am klimatisch ungünstigen Standort foggy bottom wurde es für bessere Beobachtungsmöglichkeiten im Jahr 1893 nach Georgetown verlegt.[186]
Newall Refractor 0,63 m Achromat Newall Telescope (The Engineer, May 13, 1870).jpg Nationales Observatorium Athen 1869 Das achromatisches Linsenteleskop wurde von T. Cooke & Sons für den Amateurastronomen Robert Stirling Newall gefertigt; die erforderlichen großen Linsenrohlinge wurden von Chance Brothers and Company gegossen. Zunächst auf dessen Anwesen errichtet, ab 1889 als Schenkung im Cambridge Observatory, konnte es allerdings aufgrund der ungünstigen Standorte seine volle Leistung nicht entfalten. Dies änderte sich erst nach einer Weitergabe an das Athener Observatorium im Jahr 1957 für einige Zeit.[187] Seit Ende des 20. Jahrhunderts ist das Teleskop dort Schulklassen und privaten Besuchern auch für eigene Beobachtungen zugänglich.[188]
Buckingham Refractor 0,54 m Achromat Buckingham telescope - Im1869EnV27-p005.jpg Stadtobservatorium von Edinburgh, England 1862 Achromatisches Linsenteleskop von William Wray, ausgestellt auf der Great Exhibition 1862, später in einem Observatorium in East Dulwich, London für Planetenbeobachtung genutzt, ab 1898 im Stadtobservatorium von Edinburgh, wo es 1926 schließlich demontiert wurde.[189]
18½-in Dearborn Observatory Refractor 0,47 m Achromat Generalcatalogue00burnrich 0023.jpg Dearborn Observatory, USA 1862 Für einige Jahre größtes Teleskop der USA. Der schwierige Guss der Linsenrohlinge des achromatisches Linsenteleskop gelang Chance Brothers and Company in England, geschliffen wurden sie von der Firma Alvan Clark & Sons. Es wurde anfangs zur Entdeckung von Doppelsternen, zum Studium des variablen roten Flecks des Jupiters, mit Beginn des 20. Jahr­hunderts zur foto­grafischen Messung von Stern­parallaxen genutzt.
Léon Foucaults 0,8 m 0,8 m Glasspiegel Lanature1873 telescope foucault.png Observatoire de Marseille, Frankreich 1861 Nachdem es Carl August von Steinheil und Foucault etwa 10 Jahre zuvor unabhängig gelungen war, hochreflektierende Silber­schichten auf Glasträgern aufzubringen, hatte Foucault diese Methode schrittweise bis zu dem Spiegel­durch­messer von 0,8 m weiter­entwickelt. Mit dem Teleskop entdeckte Édouard Stephan dann über 400 nebelartige Objekte, die in dem New General Catalogue aufgenommen wurden und stellte dabei fest, dass viele Gruppen bilden, wie das nach ihm benannte Stephans Quintett. Es gelang mit diesem viel kleineren Teleskop die mit dem Leviathan entdeckte Spiralstruktur der Galaxie Messier 51 zu bestätigen. Mit einem nach­gerüsteten elektrischen Antrieb der äquatorialen Montierung konnte das Teleskop Himmelsobjekten nachgeführt werden und so gelang Charles Fabry und Henri Buisson die Anwendung der Interferometrie zur genauen Spektralanalyse in der Astronomie, am Orionnebel, durch langbelichtete fotografische Aufzeichnung.[190][191]
William Lassells 48 inch 1,22 m Metallspiegel Lanature1873 telescope lassel.png Malta [192] 1861 Größtes Teleskop mit Metallspiegel und äquatorialer Montierung, 1865 demontiert. Mit dem Teleskop gelang in 2 Jahren die Entdeckung von 600 Nebel.[193]
Das von den Merkmalen ähnliche Great Melbourne Telescope 1869-2003 war lange Zeit das größte Teleskop der Südhalbkugel, jedoch aufgrund seiner lange Brennweite als Cassegrain-Teleskop weniger nützlich.[194]
Porro’s Refraktor 0,52 m Achromat Porro - LA PLUS GRANDE LUNETTE DU MONDE (cropped).jpg Paris 1857 Achromatisches Linsenteleskop. Bereits bei einem Test gelang es, einen weiteren Stern in der Sternkonstellation Trapez (im Orionnebel) zu entdecken. Zudem wurden Fotografien des Mondes und einer Sonnenfinsternis angefertigt.[195] Das Objektiv wurde zuvor auf der Weltausstellung 1855 in Paris präsentiert.[196] Das Teleskop befand sich auf Porro's Parc astronomique und wurde nach seiner Abreise 1859 abgebaut.[197][198][199][200]
Merz & Mahler Refraktor 0,38 m Achromat Great Refractor.jpg Pulkowo-Observatorium 1839 Achromatisches Linsenteleskop,[201] der baugleiche (hier gezeigte) Great Refractor in Harvard war von 1847 bis 1862 das größte Teleskop der USA. Mit ihm gelang eine Photographie des Mondes, die auf der ersten Weltausstellung 1851 präsentiert und ausgezeichnet wurde.
3-Foot Telescope 0,91 m Metallspiegel 3-foot Telescope - Sim illustrated-london-news 1843-09-09 3 71 0004 (cropped).jpg Birr (Irland) 0075 m 1839 Metallspiegel, bis zur Errichtung des Leviathan 1845 größtes funktionsfähiges Teleskop. Das Teleskop war ursprünglich ähnlich den Teleskopen von Herschel montiert, wurde 1874 auf eine äquatoriale Montierung und einen Gitterrohrtubus umgerüstet.[202] Es diente unter anderem zur Temperaturbestimmung der Mondoberfläche, 1868.[203][204]
Markree-Refraktor 0,34 m Achromat Sketch of the large equatorial belonging to E. J. Cooper Esq. at Markree, Co. Sligo - TOO 11 A1 (crop,bw).jpg Markree Observatory, Irland 1834 Achromatisches Linsenteleskop[205] Nachdem Pierre-Louis Guinand die Herstellung eines großen Rohlings aus Flintglas gelang schliff und fertigte Robert-Aglaé Cauchoix das Objektiv. Zunächst provisorisch erprobt, erfolgte dann ihr Einsatz in einer Teleskopkontruktion von Grubb, montiert im Freien auf einer Steinpyramide.

Das Teleskop wurde in den 1930ern in Hong Kong genutzt, Jahr 1941 durch einen Luftangriff beschädigt und dann der Sternwarte von Manila übergeben.[206]

Northumberland Telescope[207] 0,30 m Achromat Northumberland Telescope Dome - geograph.org.uk - 370647.jpg Institute of Astronomy, Cambridge University, Cambridge, England 1833 Das Teleskop wird seit dem von der Cambridge University Astronomical Society und der Cambridge Astronomical Association verwendet. Die Orginallinse von 11,6 Zoll hergestellt von Cauchoix, Paris, wurde zum 150. Jubiläum durch eine 12 Zoll Linse ersetzt.[208] and made by A.E. Optics of Cambridge.[209]
Fraunhofer-Refraktor 0,24 m Achromat Teadusfoto 2015 - 04.jpg Sternwarte Dorpat, Tartu, Estland 1824 Achromatisches Linsenteleskop, ein baugleiches Exemplar erhielt 1829 die Berliner Sternwarte, mit dem 1846 der Neptun entdeckt wurde.
Lilienthalisches 27-füßiges Telescop 0,51 m Metallspiegel Telescopium Lilienthal - 2015.jpg Lilienthal 1791 Seinerzeit weltweit zweitgrößtes Teleskop. Zur Erhöhung des Reflexionsvermögens des Metallspiegel wurde auf diesen eine Schicht von 5 Pfund Arsen aufgedampft.
Durch den Napoleonischen Krieg wurde die Sternwarte in den 1810er Jahren in Mitleidenschaft gezogen, und verfiel. Sie wurde 2015 neu aufgebaut.
Herschels 40-Fuß-Teleskop 1,2 m Metallspiegel La verrerie depuis les temps les plus reculés jusqu'à nos jours (1869) (14594547149) - bw.jpg England 1789 Metallspiegel. Das Teleskop stand auch interessierten Besuchern für astronomische Beobachtungen zur Verfügung, erbrachte jedoch nur wenig neue wissenschaftliche Erkenntnisse. Letztmals 1815 verwendet, 1839 zerstört[210] – 1845 durch den Leviathan übertroffen
Herschels 20-Fuß-Teleskop 0,48 m Metallspiegel William Herschel's Twenty-Foot Reflecting Telescope HIN430.jpg England 1783 Metallspiegel, durch den schrägen Einblick (ohne Sekundärspiegel) sehr lichtstark. Genutzt zur umfangreichen Entdeckung und Katalogisierung von Nebel und Sternhaufen; in gleicher Weise von 1834 bis 1838 in Kapstadt zur Erkundung des Südhimmels genutzt.
James Short No. 12 0,45 m Metallspiegel England 1742 Gregory-Teleskop mit Metallspiegel. Als Unter­nehmer stellte Short über 1000 derartige Instrumente her, und erreichte dabei schrittweise größere Durchmesser. Mit dem größten Spiegel­durchmesser von 18 Zoll fertigte er zwei weitere.[211]
Gebrüder Hadleys Newton-Teleskop 0,15 m Metallspiegel Hadley telescope crop.jpg England 1721 erstes brauchbares Spiegelteleskop, gleichscharf und einfacher zu handhaben aber weniger lichtstarkt als Huygens’ Luftteleskop.[212]
Constantijn Huygens’ Luftteleskop 0,22 m Linse
(einfach)
Huygens Aerial telescope, 1684, retouch II.jpg 1686 Linsenteleskop, bis 1734 größtes Teleskop, Brennweite/Länge: 210 ft (≈ 64 m). Weitere Teleskope von Huygens hatten etwas kleinere Durchmesser. Mit diesen Teleskopen gelang es festzustellen, dass die eigentümliche Gestalt des Saturn von einem konzentrischen Ring herrührt und dass er einen Mond besitzt. Zudem gelang es, den Orionnebel grob zu skizzieren.
Newtons Teleskop 0,03 m Metallspiegel NewtonsTelescopeReplica.jpg England 1668 Metallspiegel, erstes funktionierendes Spiegelteleskop, 15 cm Brennweite
Galileos Teleskop 0,016 – 0,038 m Linse
(einfach)
Galileo telescope replica (1) - white bg.jpg 1609
–1620
erstes Teleskop in der Himmelsbeobachtung, Linse. Entdeckung der Zusammen­setzung der Milchstraße aus Sternen, der vier großen Monde des Jupiters, der kreisförmig ausgedehnten Erscheinung von Planeten, der Venusphase, der Sonnenflecken und der verkraterten Mondoberfläche.
Gaia (Raumsonde) zwei 1,45 m × 0,5 m Siliziumkarbid
(gesintert,
Spiegelschicht
aus Silber)
Maquette de Gaia salon du Bourget 2013 DSC 0191.JPG Lagrangepunkt L2 1,5 Mio. km 2014 zwei Korsch-Teleskope mit rechteckigen Primärspiegeln deren Bilder auf einen rund 1 Milliarde Pixel auflösendem Bildsensor überlagert zusammengeführt werden. Mit den Teleskopen erfolgte die Bestimmung von über einer Milliarde Sternörter und Parallaxen, indem die Teleskope durch eine langsame Drehung der Raumsonde nach und nach das gesamte Firmament wiederholt überstreichen.
Oschin-Schmidt-Teleskop (Big Schmidt) 1,26 / 1,83 m Schmidt-Spiegel
(achromatische
Schmidt-Platte)
P48 1994 Jean Large.jpg Palomar-Observatorium, Kalifornien, USA 1948 Die vorgelagerte, bei diesen Schmidt-Teleskop durch zwei verschiedene Gläser achromatisierte Korrektorplatte beseitigt Abbildungsfehler des nachfolgenden sphärischen Spiegels, womit ein Sichtfeld von 6° × 6° erreicht wird.

Das große Sichtfeld ermöglichte mit dem Oschin-Schmidt-Teleskop in den Jahren 1948–1958 die Erstellung des ersten fotografischen Atlas des gesamten Nordhimmels, die Palomar Observatory Sky Survey, gefolgt von dem Atlas der Südhimmels, die ESO/SERC Southern Sky Survey, mithilfe des UK Schmidt-Teleskops in den Jahren 1974–1987.
Das gekrümmte Bildfeld wurde für die Zwicky Transient Facility an CCD-Bildaufnehmer durch eine Überarbeitung der Optik angepasst, und so ab 2018 eine Etendue von 53 erzielt.[213]

UK Schmidt-Teleskop 1,24 / 1,83 m Schmidt-Spiegel
(achromatische
Schmidt-Platte)
Anglo-Australian Observatory, Siding-Spring-Observatorium, Australien 1165 m 1973 Die vorgelagerte, bei diesen Schmidt-Teleskopen durch zwei verschiedene Gläser achromatisierte Korrektorplatte beseitigt Abbildungsfehler des nachfolgenden sphärischen Spiegels, womit ein Sichtfeld von 6° × 6° erreicht wird und sich eine Etendue von 72 ergibt.[8]

Das große Sichtfeld ermöglichte mit dem Oschin-Schmidt-Teleskop in den Jahren 1948–1958 die Erstellung des ersten fotografischen Atlas des gesamten Nordhimmels, die Palomar Observatory Sky Survey, gefolgt von dem Atlas der Südhimmels, die ESO/SERC Southern Sky Survey, mithilfe des UK Schmidt-Teleskops in den Jahren 1974–1987.

Swedish Solar Telescope (SST) 1,00 m Linse
(Medial)
Swedish Solar Telescope.jpg Roque de los Muchachos, La Palma, Kanarische Inseln 2396 m 2002 modernes großes Linsenteleskop, zur Sonnenbeobachtung
Sunrise 1,00 m Glasspiegel
(Glaskeramik
Zerodur)
Stratosphäre 2009 ballongetragen; Sonnenbeobachtung
New Vacuum Solar Telescope (NVST) 1,00 m Yunnan Astronomical Observatory 1720 m 2010 Zur Sonnenbeobachtung. Das Spiegelteleskop befindet sich hinter einer Glasscheibe im Vacuum, zur Vermeidung von thermischen Luft-Turbulenzen im Strahlengang.[214][215]
Stratoscope 0,30 m, 0,91 m Glasspiegel
(Quarzglas)
Stratoscope I-2.jpg Stratosphäre 1957,
1971
ballongetragen. Das Stratoscope II verwendete einen Spiegel aus Quarzglas.[216]
Die hohe Bildqualität weitgehend außerhalb von atmosphärischen Turbulenzen wurde erst wieder von dem Hubble-Weltraumteleskop übertroffen.
Grande Lunette 0,83 m / 0,62 m Achromat Observatorium-Meudon-Kuppel.jpg Pariser Observatorium, Meudon, Frankreich 1891 Doppelteleskop: die Linsen wurden von Édouard Mantois' Firma gegossen und von den Unternehmen der Henry-Brüdern geschliffen. Die Montierung des Teleskops fertigte des Unternehmen von Paul Ferdinand Gautier.[3]
Großer Refraktor 0,80 m / 0,60 m Achromat Potsdam Great Refractor.jpg Astrophysikalisches Observatorium Potsdam, Deutschland 1899 Doppelteleskop: die Linsen wurden von dem Unternehmen Schott gegossen und von dem Unternehmen C. A. Steinheil & Söhne geschliffen. Die Montierung wurde von dem Unternehmen A. Repsold & Söhne ausgeführt.[217] Mängel in der Linse wurden mehrfach versucht, durch ein Nachschleifen zu korrigieren, was erst 1942 gut gelang.

Das Teleskop wurde im Zweiten Weltkrieg beschädigt, anschließend repariert und von 1953 bis 1968 wieder genutzt.[218] Der Refraktor wurde 1999 und 2003-2006 restauriert; Führungen und Beobachtungen werden angeboten.

Dunn Solar Telescope ex-VTT 0,76 m Glasspiegel National solar observatory.jpg National Solar Observatory, New Mexico, USA 2804 m 1969 Sonnenbeobachtung, Coelostat, Evakuiert, 76 cm Apertur, 1,5 m Spiegeldurchmesser,
Rathenower Refraktor 0,70 m Linse
(Medial)
Rathenower Brachymedial-Fernrohr.jpg seit 2008 im Optikpark Rathenow 1953 Schupmann-Medial-Fernrohr, größter Amateur-Refraktor
AZT-16 0,70 m Meniskuslinse
und Glasspiegel
Sternwarte Cerro El Roble.jpg Observatorio Cerro el Roble 1968 Maksutov-Teleskop mit einem Doppelmeniskus und einem Sichtfeld von 5° × 5°[219]
AZT-14A 0,70 m Meniskuslinse
und Glasspiegel
Abastumani (14715217071).jpg Abastumani 1600 m 1956 Maksutov-Teleskop mit einem Sichtfeld von 4°[220]
Bruce Telescope 0,60 m Linse,
4-linsig
PSM V64 D521 Bruce photographic telescope (jpg).jpg Cambridge, USA
Arequipa, Peru
Bloemfontein, Südafrika
1893 Großer Bildwinkel durch einen 4-linsigen Aufbau ähnlich dem eines damaligen fotografischen Portaitobjektivs[221], womit 14 × 17 Zoll große Fotoplatten (Bildwinkel diagonal 10°) belichtet wurden und eine Himmelsdurchmusterung erfolgte. Mit dem Teleskop gelang die Entdeckung der ersten Perioden-Leuchtkraft-Beziehung an Cepheiden, wodurch eine kosmische Entfernungsbestimmung möglich wurde. Auch wurden die ersten Zwerggalaxien (in den Sternbildern Fornax und Sculptor) mit diesem Teleskop entdeckt.[222][223]
Das Teleskop wurde durch eine Spende von Catherine w. Bruce ermöglicht, von Alvan Clark & Sons gefertigt, zunächst in Cambridge erprobt, ab 1895 in Arequipa, und ab 1927 in Bloemfontein genutzt. 1950 wurde es demontiert und war später verschollen, wurde aber 2017 wiederentdeckt.[224][225][226]
Baker-Nunn-Kameras 0,50 / 0,78 m Korrektor
(dreilinsig)
und Glasspiegel
Baker-Nunn camera.jpg diverse 1958 extrem großes Sichtfeld: 30°. Etwa 20 Exemplare wurden weltweit verteilt zur Satelliten­beobachtung[227] bis Mitte der 1970er genutzt. Einige dieser Kameras wurden später für astronomische Forschung aufgerüstet.
Großer Refraktor der Archenhold-Sternwarte 0,68 Achromat ArchenholdObservatory-GreatRefractor.jpg Berlin, Deutschland 0035 m (ca.) 1896 Mit 21 m Brennweite und 130 Tonnen das längste erhaltene bewegliche Fernrohr der Welt. Die Linse wurde von dem Unternehmen Schott gegossen und von dem Unternehmen C. A. Steinheil & Söhne geschliffen. Das durch Spenden finanzierte Teleskop wurde seitdem als Volkssternwarte genutzt.[3][228]
Cambridge Optical Aperture Synthesis Telescope 0,90 m Glasspiegel
(Glaskeramik
Zerodur)
Cmglee Cambridge MRAO COAST bunker.jpg Mullard Radio Astronomy Observatory, England 1995 Interferometer mit 5 Spiegel von 0,40 m Durchmesser und einer Basislänge von bis zu 100 m, höchste Winkelauflösung von einer Millibogensekunden: Es gelang ab 1995 so, die Oberfläche entfernter Sterne abzubilden.[229][230]
Extremely Large Telescope (zuvor European Extremely Large Telescope) 39,3 m,
segment­iert
Glasspiegel
(Glaskeramik
Zerodur)
Latest Rendering of the E-ELT.jpg Cerro Armazones 3060 m 2027 Design mit 5 Spiegeln, wobei die ersten 4 Spiegel von der Schott AG aus der Glaskeramik Zerodur und der letzte Spiegel im Strahlengang besonders leichtgewichtig von der Firma Mersen Boostec aus Siliziumkarbid gefertigt wurden, alle geschliffen und poliert von der Firma REOSC. Optisch ein Drei-Spiegel-Anastigmat gefolgt von 2 nahezu planen Spiegeln zur Faltung des Strahlengangs, zum Ausgleich von atmosphärischen Störungen, und zur Stabilisierung des Bildes.

Das Teleskop wird von einem 80 m hohen Dom beherbergt, der Gebäudedurchmesser ist 117 m. Baubeginn erfolgte 2014, geplante Kosten rund 1 Milliarde Euro.

Thirty Meter Telescope 30 m,
segment­iert
Glasspiegel
(Glaskeramik
Clearceram)
TmtSummitComposite.jpg Mauna Kea 4200 m 2027 [231]
Giant Magellan Telescope 7 × 8,4 m
≙ 24,5 m
Glasspiegel
(Borsilikatglas
Ohara E6)
Giant Magellan Telescope - artist's concept.jpg Cerro Las Campanas, Chile 2029 7 Einzelspiegel auf gemeinsamer Montierung, Baubeginn 2012
Vera C. Rubin Observatory (vormals Large Synoptic Survey Telescope, LSST) 8 m Glasspiegel
(Borsilikatglas
Ohara E6)
Large Synoptic Survey Telescope 3 4 render 2013.png Cerro Pachon, Chile 2682 m 2023 großes Sichtfeld durch drei Spiegel, wobei der dritte im Zentrum des ersten ausgeformt ist, gefolgt von einem dreilinsigem Korrektor. Damit wir eine Etendue von 319 erreicht.
San Pedro Mártir Telescope 6,5 m Glasspiegel
(Borsilikatglas
Ohara E6)
San Pedro Mártir Observatory, Baja California, Mexico 2025 [232]
TAO 6,5 m Glasspiegel
(Borsilikatglas
Ohara E6)
University of Tokyo Atacama Observatory, Chile 5640 m 2022 höchstgelegenes Observatorium, speziell für Infrarotastronomie
Magdalena Ridge Observatory Interferometer 4,4 m Interferomter BCFcgOverlay.jpg Socorro County, New Mexico, USA 2021 10 × 1,4-m-Interferometer, Basislänge 400 m
Doğu Anadolu Gözlemevi (DAG) 4 m Glasspiegel
(Glaskeramik
Zerodur)
Erzurum, Türkei 2022[233] [234]
Wide Field Survey Telescope (WFST) 2,5 m Glasspiegel
(Glaskeramik
Zerodur)
Lenghu, China 4200 m 2023[235] Weites Sichtfeld.[236]
Nancy Grace Roman Space Telescope (früher: Wide Field Infrared Survey Telescope, WFIRST) 2,4 m Glasspiegel
(Glas ULE)
Wfirst beauty1 prores 1920x1080.mov .00 00 17 16.still003 crop.jpg Orbit 2027 Satellit mit Spiegelteleskop für einen Spektral­bereich 480 nm – 2 µm mit einem 100-fachen Sichtfeld des Hubble-Weltraumteleskops bei gleichem Haupt­spiegel­durchmesser, durch eine Kombination mit zwei weiteren Spiegeln. Das Bild wird von einer 300 Megapixel Kamera aufgezeichnet; die Etendue ist 29. Zweites Instrument ist ein Coronograph zur Beobachtung von Exoplaneten.[237][238]

Der Hauptspiegel, ursprünglich für einen Aufklärungssatelliten gefertigt, ist mit 186 kg für seine Größe sehr leicht.

Xuntian-Teleskop 2 m Siliziumkarbid
(verspiegelt)
China CSST Xuntian.jpg Orbit 2024 [239]
Spektr-UV 1,7 m Glasspiegel
(Glaskeramik
Sitall)
MAKS Airshow 2013 (Ramenskoye Airport, Russia) (525-11).jpg Orbit 2025 [240]
MEPHISTO 1,6 m Glasspiegel
(Glaskeramik
Clearceram)
Lijiang 2023 [241]

AnmerkungenBearbeiten


EinzelnachweiseBearbeiten

  1. https://www.researchgate.net/publication/308696652_EVOLUTION_OF_THE_FOUCAULT-SECRETAN_REFLECTING_TELESCOPE
  2. René Racine: The Historical Growth of Telescope Aperture. In: The Publications of the Astronomical Society of the Pacific. Band 116, Nr. 815, 2004, S. 77–83, bibcode:2004PASP..116...77R.
  3. a b c d H. P. Hollis: Large telescopes. In: The Observatory. Band 37, 1914, S. 245–252, bibcode:1914Obs....37..245H.
  4. https://www.spektrum.de%2Fpdf%2Fsuw-2011-08-s044-pdf
  5. ⭐ Large Binocular Telescope. In: Sterngucker.de. Abgerufen am 22. Februar 2020 (deutsch).
  6. a b c d e f Mirror Castings. SOML, archiviert vom Original am 23. Juni 2012; abgerufen am 12. April 2012.Vorlage:Cite web/temporär
  7. a b c d e f g https://www.us.schott.com/d/advanced_optics/d0384fa7-d94d-4247-9810-29790623a47e/1.3/schott_zerodur_katalog_july_2011_us.pdf
  8. a b c d e f g h i j k https://www.researchgate.net/publication/233925388_VYuTerebizh_New_designs_of_survey_telescopes_Astron_Nachr_AN_332_No_7_714_-_742_2011
  9. https://www.eso.org/public/announcements/ann16078/
  10. https://www.eso.org/public/science/top10/
  11. http://www.gemini.edu/node/11893
  12. https://www.nasa.gov/press-release/nasa-s-webb-reaches-alignment-milestone-optics-working-successfully
  13. https://webb.nasa.gov/content/observatory/ote/mirrors/index.html
  14. https://www.sao.ru/Doc-en/Events/2018/MirrorChronicle/index.html
  15. https://www.jstor.org/stable/10.1086/517621
  16. a b https://books.google.de/books?id=o0xsDQAAQBAJ&pg=PA93&lpg=PA93&dq=Telescopio+Nazionale+Galileo+%22ule%22&source=bl&ots=bLLF8mFY_4&sig=ACfU3U2unMqxVHmbZ0MXIkqc9pRjHcPSKw&hl=de&sa=X&ved=2ahUKEwi_ipWLzuvuAhUNDxQKHctuBpwQ6AEwDnoECBIQAg#v=onepage&q&f=false
  17. https://www.researchgate.net/publication/228562006_Discovery_Channel_Telescope_progress_and_status/link/0912f512ba704dd512000000/download
  18. https://amostech.com/TechnicalPapers/2007/Telescopes_Instrumentation/Ackermann.pdf
  19. https://www.ing.iac.es/PR/press/weave_LIFU_first_light.html
  20. https://arxiv.org/abs/1810.08695
  21. https://arxiv.org/pdf/1409.4780.pdf
  22. Visible and Infrared Survey Telescope for Astronomy, auf eso.org
  23. https://arxiv.org/abs/1810.08695
  24. https://noirlab.edu/public/images/noao-01098/
  25. https://arxiv.org/pdf/2112.01209.pdf
  26. The 4m Liquid Mirror Telescope Project, auf aeos.ulg.ac.be
  27. Archivierte Kopie (Memento des Originals vom 26. Juni 2020 im Internet Archive)  Info: Der Archivlink wurde automatisch eingesetzt und noch nicht geprüft. Bitte prüfe Original- und Archivlink gemäß Anleitung und entferne dann diesen Hinweis.@1@2Vorlage:Webachiv/IABot/aries.res.in
  28. https://www.wissenschaft-x.com/worlds-first-liquid-telescope-for-astronomy
  29. http://adsabs.harvard.edu/full/1971PASAu...2....2M
  30. https://noirlab.edu/public/images/noao-04580/
  31. David Leverington: Observatories and Telescopes of Modern Times. Cambridge University Press, 2017, ISBN 978-0-521-89993-2 (google.com).
  32. https://arxiv.org/abs/1810.08695
  33. https://articles.adsabs.harvard.edu/pdf/1992ESOC...42..543E
  34. https://articles.adsabs.harvard.edu/pdf/1977JRASC..71....9L
  35. https://www.cfht.hawaii.edu/en/science/LargePrograms/
  36. https://arxiv.org/ftp/arxiv/papers/1710/1710.01050.pdf
  37. https://www.archiv-berlin.mpg.de/49042/hausreihe_21.pdf
  38. http://articles.adsabs.harvard.edu/pdf/1997MNRAS.284..576E
  39. Jim Peterson, Glen Mackie: A brief history of the Astrophysical research Consortium and the Apache Point Observatory. In: Journal of Astronomical History and Heritage. Band 9, Nr. 1, 2006, S. 109–128, bibcode:2006JAHH....9..109P.
  40. Peterson, Jim: A Brief History of the Astrophysical Research Consortium (ARC) and the Apache Point Observatory (APO). (Nicht mehr online verfügbar.) Apache Point Observatory, archiviert vom Original am 11. August 2011; abgerufen am 13. Februar 2021.  Info: Der Archivlink wurde automatisch eingesetzt und noch nicht geprüft. Bitte prüfe Original- und Archivlink gemäß Anleitung und entferne dann diesen Hinweis.@1@2Vorlage:Webachiv/IABot/arc.apo.nmsu.eduVorlage:Cite web/temporär
  41. https://www.noao.edu/noao/pio/brochures/wiyn/text.html
  42. https://www.researchgate.net/profile/Frederic-Safa/publication/228925471_A_PH_35_M_SiC_telescope_for_Herschel_mission/links/59911a67a6fdcc10d811500b/A-PH-35-M-SiC-telescope-for-Herschel-mission.pdf?origin=publication_detail
  43. http://www.ucolick.org/public/telescopes/shane.html
  44. https://www.lpi.usra.edu/decadal/sbag/topical_wp/IRTF_1.pdf
  45. http://irtfweb.ifa.hawaii.edu/research/science.php
  46. https://orbitaldebris.jsc.nasa.gov/quarterly-news/pdfs/odqnv4i2.pdf
  47. Joseph N. Tatarewicz: Space Technology & Planetary Astronomy, S. 79
  48. Large Astronomical Liquid Mirrors, bibcode:1993PASP..105..501H
  49. arxiv:astro-ph/9410008
  50. arxiv:astro-ph/9406057
  51. https://books.google.de/books?id=o0xsDQAAQBAJ&pg=PA93&lpg=PA93&dq=Telescopio+Nazionale+Galileo+%22ule%22&source=bl&ots=bLLF8mFY_4&sig=ACfU3U2unMqxVHmbZ0MXIkqc9pRjHcPSKw&hl=de&sa=X&ved=2ahUKEwi_ipWLzuvuAhUNDxQKHctuBpwQ6AEwDnoECBIQAg#v=onepage&q&f=false
  52. http://lerga.craocrimea.ru/Instr/ztsh_en.html
  53. First Images from the VLT Survey Telescope auf eso.org
  54. https://www.eso.org/public/teles-instr/paranal-observatory/surveytelescopes/vst/mirror/
  55. http://www.j-pas.org/news/show/87
  56. First Light for the JST/T250 Telescope. Abgerufen am 30. März 2020., auf j-pas.org
  57. Edwin Hubble & the Expanding Universe. Australia Telescope National Facility.
  58. a b L. MacDonald: The origins and construction of the Isaac Newton Telescope, Herstmonceux, 1944-1967. In: Journal of the British Astronomical Association. Band 120, Nr. 2, 2010, S. 73–86, bibcode:2010JBAA..120...73M.
  59. https://www.ing.iac.es//PR/int_info/
  60. http://www.not.iac.es/general/newnot/
  61. https://www.lco.cl/irenee-du-pont-telescope/
  62. https://www.researchgate.net/profile/Sergey_Potanin/publication/318983191_Analysis_of_the_Optics_of_the_25-m_Telescope_of_the_Sternberg_Astronomical_Institute/links/5a71f3c5aca2720bc0d9d6d2/Analysis-of-the-Optics-of-the-25-m-Telescope-of-the-Sternberg-Astronomical-Institute.pdf?origin=publication_detail
  63. http://www.ynao.ac.cn/kyzz/2m4_telescope/
  64. https://ui.adsabs.harvard.edu/abs/2005ApJ...628..453T/abstract
  65. https://noirlab.edu/public/programs/kitt-peak-national-observatory/the-hiltner-24m-telescope/
  66. James Webb Space Telescope (JWST) Independent Comprehensive Review Panel (ICRP) Final Report. NASA, S. 32, abgerufen am 4. September 2012.Vorlage:Cite web/temporär
  67. https://ui.adsabs.harvard.edu/abs/2006SPIE.6267E..0CP/abstract
  68. Thai National Observatory (TNO) (Memento des Originals vom 24. September 2020 im Internet Archive)  Info: Der Archivlink wurde automatisch eingesetzt und noch nicht geprüft. Bitte prüfe Original- und Archivlink gemäß Anleitung und entferne dann diesen Hinweis.@1@2Vorlage:Webachiv/IABot/old.narit.or.th, auf old.narit.or.th, abgerufen am 30. März 2020
  69. Steven S. Vogt et al., APF - The Lick Observatory Automated Planet Finder, 26 February 2014.
  70. https://aip.scitation.org/doi/abs/10.1063/1.2348062
  71. Website des Observatoriums
  72. https://ntrs.nasa.gov/api/citations/19710003645/downloads/19710003645.pdf
  73. https://www.mpia.de/news/wissenschaft/2004-07-calar-alto
  74. http://www.caha.es/CAHA/Telescopes/2.2m.html
  75. https://www.corning.com/media/worldwide/csm/documents/Corning_Supplier_of_Multiple.pdf
  76. The Xinglong 2.16-m Telescope: Current Instruments and Scientific Projects, auf arxiv.org
  77. https://www.spiedigitallibrary.org/conference-proceedings-of-spie/2321/0000/Chinese-216-meter-telescope-in-Xing-long/10.1117/12.182106.short
  78. https://articles.adsabs.harvard.edu/pdf/1981raoa.conf..133D
  79. The Kitt Peak Virtual Tour 2.1-Meter Telescope, auf noao.edu
  80. D. Walsh, Carswell, R. F., Weymann, R. J.: 0957 + 561 A, B: twin quasistellar objects or gravitational lens? In: Nature. 279. Jahrgang, Nr. 5712, 31. Mai 1979, S. 381–384, doi:10.1038/279381a0, PMID 16068158, bibcode:1979Natur.279..381W.
  81. Abstract: The ASTRA Spectrophotometer IAU Symposium 210 Modeling of Stellar Atmospheres, auf people.brandonu.ca
  82. T13 2.0 meter AST, auf schwab.tsuniv.edu
  83. https://ui.adsabs.harvard.edu/abs/2000BASI...28..233P/abstract
  84. http://www.tls-tautenburg.de/TLS/index.php?id=25
  85. https://ui.adsabs.harvard.edu/abs/1961Obs....81...91V/abstract
  86. The Terskol Observatory in the Northern Caucasus, auf astro.bas.bg
  87. https://ui.adsabs.harvard.edu/abs/2003AAS...202.3803Y/abstract
  88. https://www.spiedigitallibrary.org/conference-proceedings-of-spie/3352/0000/MAGNUM-multicolor-active-galactic-nuclei-monitoring-Project/10.1117/12.319247.short
  89. Faulkes Telescope North, auf lcogt.net
  90. https://ui.adsabs.harvard.edu/abs/2013PASP..125.1031B/abstract
  91. Faulkes Telescope South, auf lcogt.net
  92. Liverpool Telescope 2 - Science, Education, Innovation, auf telescope.livjm.ac.uk
  93. https://www.spiedigitallibrary.org/conference-proceedings-of-spie/5489/0000/The-Liverpool-Telescope-performance-and-first-results/10.1117/12.551456.short
  94. https://web.archive.org/web/20181006071437/http://www.iucaa.in/~hkdas/hkdas.html
  95. Vom Wendelstein weit in den Weltraum schauen (Memento vom 8. April 2016 im Internet Archive)
  96. https://ui.adsabs.harvard.edu/abs/2010SPIE.7733E..07H/abstract
  97. https://www-obs--hp-fr.translate.goog/guide/aluminure.shtml?_x_tr_sch=http&_x_tr_sl=auto&_x_tr_tl=de&_x_tr_hl=de&_x_tr_pto=wapp
  98. http://assa.saao.ac.za/sections/history/observatories/radcliffe_obs/
  99. http://assa.saao.ac.za/sections/history/telescopes/radcliffe_74/
  100. http://www.oao.nao.ac.jp/en/telescope/abouttel188/
  101. http://www.oao.nao.ac.jp/en/telescope/abouttel188/
  102. A. M. I. Osman: The Kottamia Observatory and other aspects of astronomy in Egypt. In: Highlights of Astronomy. Band 10, 1995, S. 670 (cambridge.org).
  103. H. A. Deebes, W. Heilman: Sun, Sand and Stars. In: African Skies. Band 4, 1999, S. 7, bibcode:1999AfrSk...4....7D.
  104. https://ui.adsabs.harvard.edu/abs/1992ESOC...42..141R/abstract
  105. https://ui.adsabs.harvard.edu/abs/1986SPIE..571...92G/abstract
  106. https://www.oapd.inaf.it/sede-di-asiago/telescopes-and-instrumentations/copernico-182cm-telescope
  107. Variable Stars in the Original CCD/Transit Instrument Survey, auf iopscience.iop.org
  108. https://www.spiedigitallibrary.org/conference-proceedings-of-spie/7733/773311/Optical-design-of-the-CCD-Transit-Instrument-with-Innovative-Instrumentation/10.1117/12.856066.short
  109. The Rothney Astrophysical Observatory, auf people.ucalgary.ca
  110. https://arc.apo.nmsu.edu/ARC-History.pdf
  111. https://people.ucalgary.ca/~milone/mirror.html
  112. https://ui.adsabs.harvard.edu/abs/1983SPIE..444..184A/abstract
  113. https://ui.adsabs.harvard.edu/abs/1998SPIE.3351..450P/abstractmulti
  114. https://www.researchgate.net/profile/William-Hoffmann-3/publication/234364241_The_Multiple_Mirror_Telescope/links/55410ca70cf2718618dc989d/The-Multiple-Mirror-Telescope.pdf
  115. a b https://www.researchgate.net/publication/252123238_Alignment_of_the_Pan-STARRS_PS1_prototype_telescope_optics
  116. https://arxiv.org/ftp/arxiv/papers/1009/1009.2263.pdf
  117. Nikoloa Schmidt (Hrsg.): Planetary Defense: Global Collaboration for Defending Earth from Asteroids ... Springer, Oxford/New York 2004, ISBN 978-3-03000999-1 (eingeschränkte Vorschau in der Google-Buchsuche).
  118. a b c James Nye: Truckdriver builds world’s largest amateur telescope using 900 pound mirror originally meant for Cold War spy satellite, Daily Mail, 5. November 2013
  119. Andrew Fazekas: World’s Largest Backyard Telescope, National Geographic, 8. November 2013
  120. bibcode:2015JATIS...1b4001R
  121. https://www.globaltimes.cn/content/1183704.shtml
  122. History of Perkins Observatory. Perkins Observatory, abgerufen am 30. März 2020.
  123. https://www.nature.com/articles/129017c0
  124. http://bzhang.lamost.org/upload/astron/cphistory.html
  125. Sayan Solar Observatoryl – ISTP SB RAS. En.iszf.irk.ru, abgerufen am 5. März 2012.Vorlage:Cite web/temporär
  126. High-Tech Telescope for Dangerous Asteroids Detection Launched in Russia, auf sputniknews.com
  127. Space debris observation with the new equipments on sayan observatora (Memento vom 13. Januar 2019 im Internet Archive), auf aero.tamu.edu
  128. The NEO problem: current activities in Russia,auf unoosa.org
  129. LNA – Telescópios. (Nicht mehr online verfügbar.) Lna.br, 22. Juli 2011, archiviert vom Original am 22. Juli 2009; abgerufen am 5. März 2012.  Info: Der Archivlink wurde automatisch eingesetzt und noch nicht geprüft. Bitte prüfe Original- und Archivlink gemäß Anleitung und entferne dann diesen Hinweis.@1@2Vorlage:Webachiv/IABot/www.lna.brVorlage:Cite web/temporär
  130. https://www.researchgate.net/publication/253847241_Wide-field_telescope_design_for_the_KMTNet_project
  131. https://sana.ep.sci.hokudai.ac.jp/nayoro/telescope/index-en.html
  132. https://sana.ep.sci.hokudai.ac.jp/nayoro/publications/international/spie2012_msi.pdf
  133. U.S. Naval Observatory Flagstaff – 1.55-m Astrometric Reflector. Nofs.navy.mil, 24. Mai 2001, archiviert vom Original am 26. Juli 2011; abgerufen am 5. März 2012.Vorlage:Cite web/temporär
  134. https://ui.adsabs.harvard.edu/abs/1963ApOpt...2....1S/abstract
  135. LPL’s July 20 open house celebrates lunar missions, birth of lab. Archiviert vom Original am 10. Oktober 2007; abgerufen am 10. Januar 2010.Vorlage:Cite web/temporär
  136. optical seti photographs. Seti.harvard.edu, abgerufen am 5. März 2012.Vorlage:Cite web/temporär
  137. A Series: The 24 inch Bruce Doublet, auf dasch.rc.fas.harvard.edu
  138. EABA. Abgerufen am 30. März 2020., auf oac.unc.edu.ar
  139. http://www.cordobaestelar.oac.uncor.edu/Capitulo24.pdf
  140. Mauro Gargano: INAF-OAC » TT1 … Oacn.inaf.it, abgerufen am 5. März 2012.Vorlage:Cite web/temporär
  141. New York Times – "NEW HARVARD TELESCOPE.; Sixty-Inch Reflector, Biggest in the World, Being Set Up. ", 6. April 1905, Thursday Page 9
  142. Peter van de Kamp: The Galactocentric Revolution, A Reminiscent Narrative. In: Publications of the Astronomical Society of the Pacific. Band 77, Nr. 458, 1965, S. 325, bibcode:1965PASP...77..325V.
  143. FLWO 1.5m (60") TELESCOPE, auf sao.arizona.edu
  144. https://articles.adsabs.harvard.edu/pdf/1973SAOSR.355.....S
  145. https://articles.adsabs.harvard.edu//full/1978JBAA...88..257J/0000259.000.html
  146. https://www.worldscientific.com/doi/pdf/10.1142/S2251171714500056
  147. http://www.obs-hp.fr/guide/t152.shtml
  148. UMN Infrared Astronomy: Telescopes. Ir.astro.umn.edu, archiviert vom Original am 10. Februar 2012; abgerufen am 5. März 2012.Vorlage:Cite web/temporär
  149. https://ui.adsabs.harvard.edu/abs/1975BAAS....7..150N/abstract
  150. Jpl.Nasa.Gov: Asteroid 2011 AG5 – A Reality Check (NASA). (Nicht mehr online verfügbar.) Jpl.nasa.gov, archiviert vom Original am 16. April 2021; abgerufen am 5. März 2012.  Info: Der Archivlink wurde automatisch eingesetzt und noch nicht geprüft. Bitte prüfe Original- und Archivlink gemäß Anleitung und entferne dann diesen Hinweis.@1@2Vorlage:Webachiv/IABot/www.jpl.nasa.govVorlage:Cite web/temporär
  151. NO. 172 The lunar and planetary laboratory and its telescopes, auf lpl.arizona.edu
  152. The EOCA 1.52m Telescope. Archiviert vom Original am 2. Februar 2002;.Vorlage:Cite web/temporär
  153. https://www.eso.org/public/teles-instr/lasilla/152metre/
  154. The 152 cm Telescope. Bo.astro.it, 8. Juni 1994, archiviert vom Original am 7. Februar 2012; abgerufen am 5. März 2012.Vorlage:Cite web/temporär
  155. The TIRGO observatory. In: ESO Infrared Workshop, 2nd, Garching, West Germany, April 20-23, 1982, Proceedings. bibcode:1982esoi.work...45S.
  156. https://adsabs.harvard.edu/full/1978MmSAI..49...57C
  157. Maidanak observatory. Astrin.uzsci.net, 26. Februar 2002, abgerufen am 5. März 2012.Vorlage:Cite web/temporär
  158. Tug Home. Astroa.physics.metu.edu.tr, abgerufen am 5. März 2012.Vorlage:Cite web/temporär
  159. Nikolai Alexandrovich: RTT150, Russian-Turkish 1.5-m Telescope. Hea.iki.rssi.ru, abgerufen am 5. März 2012 (russisch).
  160. http://hea.iki.rssi.ru/AZT22/ENG/to_mirror.htm
  161. Tartu 1.5m Telescope. Aai.ee, abgerufen am 5. März 2012.Vorlage:Cite web/temporär
  162. https://www.eso.org/public/teles-instr/lasilla/danish154/
  163. Observatorio Cerro Armazones » 1.5-m telescope. (Nicht mehr online verfügbar.) Ia.ucn.cl, 22. Juni 2010, archiviert vom Original am 2. März 2012; abgerufen am 5. März 2012.  Info: Der Archivlink wurde automatisch eingesetzt und noch nicht geprüft. Bitte prüfe Original- und Archivlink gemäß Anleitung und entferne dann diesen Hinweis.@1@2Vorlage:Webachiv/IABot/www.ia.ucn.clVorlage:Cite web/temporär
  164. GREGOR Website at KIS, Freiburg
  165. N. U. Mayall: Kitt Peak National Observatory, Tucson, Arizona and Cerro Tololo Inter-American Observatory, La Serena, Chile. Report 1968–1969. In: Bulletin of the Astronomical Society. 1. Jahrgang, 1969, S. 298, bibcode:1969BAAS....1..298M.
  166. Gunma Astronomical Observatory
  167. bibcode:2002aprm.conf....7H
  168. Universität Wien - Leopold Figl-Observatorium für Astrophysik - Instrumentation. Abgerufen am 30. März 2020.
  169. https://books.google.de/books?redir_esc=y&hl=de&id=qG7vAAAAMAAJ&focus=searchwithinvolume&q=glas
  170. KANATA 1.5-m Optical and Near-Infrared telescope, auf hasc.hiroshima-u.ac.jp
  171. bibcode:1979MNSSA..38...10J
  172. Fifty years of the fessenkovastrophysical institute, auf images.astronet.ru
  173. „Planetary Researches in Kazakhstan“ (accessed 24. November 2010)
  174. Victor Tejfel: Übersicht (englisch)
  175. 1.5-meter telescope put into operation at Assy-Turgen observatory, auf aphi.kz
  176. https://crao.ru/index.php/en/telescopes-en/zeiss-en/zeiss-en-history
  177. https://hsweb.hs.uni-hamburg.de/projects/plate-archive/Scans/web/Stw/1mspiegel/1mspiegel.html
  178. https://www.lsw.uni-heidelberg.de/projects/exoplanets/waltz.html
  179. https://www.observatoiredeparis.psl.eu/le-telescope-de-1-metre.html?lang=en
  180. https://archive.org/details/bub_gb_TBdLAAAAYAAJ/page/n70/mode/1up
  181. http://collections.ucolick.org/archives_on_line/bldg_the_obs.html
  182. https://adsabs.harvard.edu/full/1882AN....102...49S
  183. A. A. Common: Description of a three-feet telescope. In: The Observatory. Band 3, 1879, S. 167–169, bibcode:1879Obs.....3..167C.
  184. http://www.astrosurf.com/re/history_astrophotography_timeline.pdf
  185. https://repository.si.edu/bitstream/handle/10088/10236/USNMB_2741968_unit.pdf?sequence=1&isAllowed=y s. S. 85
  186. https://www.cnmoc.usff.navy.mil/Our-Commands/United-States-Naval-Observatory/Our-Telescopes/The-26-inch-Great-Equatorial-telescope/
  187. D. W. Dewhirst: The Newall telescope. In: Journal of the British Astronomical Association. Band 80, 1970, S. 493–495, bibcode:1970JBAA...80..493D.
  188. Nikos Matsopoulos: The Travels of an Impressive Refractor: The 25″ Newall. In: Journal of the Antique Telescope Society. Band 8, 1995, S. 8–11, bibcode:1995JATSo...8....8M.
    https://www.noa.gr/en/public-outreach/visitor-centers/visitor-center-penteli/
  189. J. L. E. Dreyer: History of the Royal Astronomical Society. 1923, S. 189., History of the Royal Astronomical Society (1923)
    Henry C. King: The History of the Telescope. 1955 (google.de).
    accounts and proceedings of Mr. Barclay's Observatory. In: Monthly Notices of the Royal Astronomical Society. Band 33, 1873, S. 227, bibcode:1873MNRAS..33R.227..
  190. William Tobin: Foucault's invention of the silvered-glass reflecting telescope and the history of his 80-cm reflector at the observatoire de Marseille. In: Vistas in Astronomy. Band 30, Nr. 2, 1987, S. 153–184, bibcode:1987VA.....30..153T.
  191. https://adsabs.harvard.edu/full/2008JAHH...11..107T
  192. http://www.klima-luft.de/steinicke/ngcic/persons/lassell.htm https://hdl.handle.net/2027/mdp.39015038795434?urlappend=%3Bseq=8
  193. https://books.google.de/books?id=mOObBgAAQBAJ&lpg=PA491&dq=feil%20clark%20pulkowa&hl=de&pg=PA495#v=onepage&q&f=false
  194. S. C. B. Gascoigne: The Great Melbourne Telescope and other 19th-century Reflectors. In: Quarterly Journal of the Royal Astronomical Society. Band 37, 1996, S. 101, bibcode:1996QJRAS..37..101G.
  195. Antoine D’Abbadie: Discovery of a New Star in the Trapezium of Orion. In: Monthly Notices of the Royal Astronomical Society. Band 17, 1857, S. 245, bibcode:1857MNRAS..17..245D.
    https://fr.wikisource.org/wiki/Page:Revue_des_Deux_Mondes_-_1878_-_tome_25.djvu/886
    http://home.europa.com/~telscope/porro.txt
  196. https://books.google.de/books?id=KEYMY4_ytuUC&lpg=PA46&ots=pWnKsiDS_i&dq=Exposition%20universelle%20de%201855%20%22porro%22&hl=de&pg=PA46#v=onepage&q&f=false
  197. https://books.google.de/books?id=ft2TDgAAQBAJ&lpg=PA14&ots=Ur8n0B-VTz&dq=porro%20telescope%20paris&hl=de&pg=PA14#v=onepage&q&f=false
  198. Programme de souscription pour la fondation d'un observatoire et d'une société astronomique universelle, ayant pour but le progrès de l'art d'observer et plus particulièrement l'application rationnelle de la photographie et de l'électricité à l'astronomie. Paris 1858 (bl.uk).
  199. https://hal.univ-lorraine.fr/hal-03213170/document
  200. http://www.obs-hp.fr/dictionnaire/astronomes_A-Z.pdf
  201. Gerhard Hartl: Der Refraktor der Sternwarte in Pulkowa. Abbildungen, Verbleib im Deutschen Museum und Zerstörung 1944. S. 18 (deutsches-museum.de [PDF]).
    Zeichnung
  202. https://royalsocietypublishing.org/doi/pdf/10.1098/rstl.1880.0006
  203. https://www.sciencephoto.com/media/634048/view
  204. https://www.sciencephoto.com/media/321433/view
  205. https://ui.adsabs.harvard.edu/abs/1984JHA....15...64M/abstract
  206. https://articles.adsabs.harvard.edu//full/1982JHA....13..146H/0000149.000.html
  207. Northumberland Telescope | Institute of Astronomy. In: www.ast.cam.ac.uk. Abgerufen am 8. September 2019.Vorlage:Cite web/temporär
  208. Dr Roderick V Willstrop | Institute of Astronomy. In: www.ast.cam.ac.uk. Abgerufen am 8. September 2019.Vorlage:Cite web/temporär
  209. Northumberland Telescope | Institute of Astronomy. In: www.ast.cam.ac.uk. Abgerufen am 7. März 2019.Vorlage:Cite web/temporär
  210. https://www.rmg.co.uk/collections/objects/rmgc-object-11109
  211. Beschreibung,Bilder
  212. Henry C. King: The History of the Telescope. 2003, S. 77 (google.de).
  213. https://www-zeuthen.desy.de/technisches_seminar/texte/ztf_camera_201606.pdf
  214. http://english.ynao.cas.cn/ti/nvst/
  215. http://fso.ynao.ac.cn/Introduction.aspx
  216. https://www.corning.com/media/worldwide/csm/documents/Corning_Supplier_of_Multiple.pdf
  217. https://articles.adsabs.harvard.edu/pdf/1900ApJ....11S.100
  218. https://articles.adsabs.harvard.edu/pdf/1999JATSo..17....3G
  219. https://www.jstor.org/stable/40677754
  220. https://observatory.iliauni.edu.ge/meniskuri-teleskopi/
  221. https://www.jstor.org/stable/pdf/40670144.pdf
  222. Shapley, H., (1938) Harvard Bull. 908.
  223. Shapley H: Two Stellar Systems of a New Kind. In: Nature. 142. Jahrgang, Nr. 3598, 1938, S. 715–6, doi:10.1038/142715b0, bibcode:1938Natur.142..715S.
  224. https://www.harvardmagazine.com/2017/11/eye-on-the-cosmos
  225. https://www.degruyter.com/document/doi/10.4159/harvard.9780674418806.c9/pdf
  226. https://archive.org/details/popularsciencemon64newy/page/515/mode/1up?view=theater&q=Bruce
  227. NASA, Vanguard: A History, Chapter 9, "The Tracking Systems"
  228. https://www.in-berlin-brandenburg.com/Berliner_Bezirke/Treptow-Koepenick/Sehenswuerdigkeiten/Archenhold-Sternwarte.html
  229. J. E. Baldwin et al.: The first images from an optical aperture synthesis array: mapping of Capella with COAST at two epochs. In: Astronomy & Astrophysics. Band 306, 1996, bibcode:1996A&A...306L..13B.
  230. https://www.spiedigitallibrary.org/conference-proceedings-of-spie/2200/1/Design-and-performance-of-COAST/10.1117/12.177233.short
  231. https://www.tmt.org/page/optics
  232. https://repository.arizona.edu/bitstream/handle/10150/632273/107000Z.pdf?sequence=1, auf cfa.harvard.edu/
  233. https://www.innovationnewsnetwork.com/dag-turkeys-21st-century-grade-international-astronomical-observatory/17050/
  234. https://www.amos.be/project/dag-dodu-anadolu-gozlemevy-eastern-anatolia-observatory
  235. https://global.chinadaily.com.cn/a/202004/22/WS5e9f7dc7a3105d50a3d17d46.html
  236. https://ui.adsabs.harvard.edu/abs/2016SPIE10154E..2AL/abstract
  237. Wide Field Infrared Survey Telescope, auf wfirst.gsfc.nasa.gov
  238. http://astro.vaporia.com/start/etendue.html
  239. https://newspaceeconomy.ca/2022/06/05/china-is-building-an-advanced-space-telescope/#jp-carousel-11348
  240. https://gnuva.net/imagenes/PDF/TelAvivTalks/ShustovBorisWSO.pdf
  241. http://www.lamost.org/meetings/The-Milky-Way-2019/191016/19yichang_Talk35_YangHuang.pdf

WeblinksBearbeiten