Korrelationsungleichung

mathematischer Satz

Als Korrelationsungleichungen werden eine Gruppe von mathematischen Ungleichungen bezeichnet, welche den Begriff der positiven Korrelation auf partiell geordnete Mengen (POSETs) und distributive Verbände übertragen. Sie haben darüber hinaus eine wahrscheinlichkeitstheoretische Interpretation und berühren das mathematische Teilgebiet der Theorie der stochastischen Ordnungen.

Die Entwicklung wurde angestoßen durch die FKG-Ungleichung aus dem Jahr 1971, benannt nach C. M. Fortuin, Jean Ginibre und P. W. Kasteleyn, welche auf verschiedensten Gebieten Anwendung gefunden hat, unter anderem auf den Gebieten statistische Mechanik, Partikelsysteme, Kombinatorik und Perkolationstheorie.[1] Eine frühere Version dieser Ungleichung für unabhängige und identisch verteilte Zufallsvariablen wurde 1960 von Theodore Edward Harris bewiesen[2], wurde jedoch zunächst nicht von Mathematikern anderer Disziplinen rezipiert[3] und erst durch die Veröffentlichung von Fortuin, Kasteleyn und Ginibre bekannt. In diesem Zusammenhang spielt der Begriff des assoziierten Maßes (auch Maß mit positiven Korrelationen) eine Rolle.

Ausgehend von der FKG-Ungleichung wurden weitere ähnliche Ungleichungen gefunden, zum Beispiel die Holley-Ungleichung nach Richard Holley im Jahr 1974, oder die sehr allgemeine Vier-Funktionen-Ungleichung von Rudolf Ahlswede und David E. Daykin aus dem Jahre 1978, aus der die anderen genannten Ungleichungen folgen.[4][5]

Assoziierte Maße Bearbeiten

Der Begriff des assoziierten Maßes wurde 1967 von J. D. Esary, Frank Proschan und D. W. Walkup[6] eingeführt. Wegen der Analogie zu positiven Korrelationen von Zufallsvariablen wird von manchen Autoren auch die Bezeichnung Maß mit positiven Korrelationen verwendet.

Ein endliches Maß   auf  , wobei   ein halbgeordneter topologischer Raum sei,[A 1] heißt assoziiert, falls

 

für alle beschränkten, stetigen, monoton wachsenden Funktionen   von   nach   gilt.

Die FKG-Ungleichung Bearbeiten

Die FKG-Ungleichung, benannt nach C. M. Fortuin, J. Ginibre und P. W. Kasteleyn (1971), ist ursprünglich eine Korrelationsungleichung auf distributiven Verbänden. Sie ist ein fundamentales Werkzeug auf den Gebieten der statistischen Mechanik und der probabilistischen Kombinatorik[A 2] (speziell auf dem Gebiet der Zufallsgraphen.) Sie besagt übertragen auf ein wahrscheinlichkeitstheoretisches Setting in etwa, dass wachsende Ereignisse miteinander positiv korreliert sind.

Formulierung für endliche distributive Verbände Bearbeiten

Sei   ein endlicher distributiver Verband, und   ein Maß auf  , welches

 

für alle  ,   im Verband   erfüllt. Diese Eigenschaft heißt auch Log-Supermodularität.

Die FKG-Ungleichung besagt dann, dass das Maß   assoziiert ist, also dass für zwei beliebige bezüglich der von den Verbandsoperationen induzierten Halbordnung stetige, monoton wachsende, quadratintegrierbare Funktionen   und   von   nach   gilt, dass sie positiv korreliert sind:

 .

Ebenfalls positiv korreliert sind zwei Funktionen   und  , wenn man die Bedingung „monoton steigend“ durch „monoton fallend“ ersetzt. Ist die eine Funktion monoton wachsend, die andere monoton fallend, dann sind sie negativ korreliert. Ein Beweis befindet sich in der Originalarbeit.

Eine ähnliche Aussage gilt im allgemeineren Fall, dass   ein abzählbarer kompakter metrischer Raum ist. In diesem Fall muss   ein strikt positives endliches Maß sein und die Log-Supermodularität muss über Randereignisse (Zylindermengen) definiert werden.[7]

Weitere Formulierungen Bearbeiten

In Rinott, Saks findet sich der Beweis für eine Form der FKG-Ungleichung für  -finite Maße auf der (überabzählbaren) Menge  . In diesem Fall wird Log-Supermodularität eines Maßes über die Dichtefunktion   (bezüglich irgendeines Produktmaßes auf  ) definiert, welche für alle   erfüllen muss:

 .

Die Griffith-Ungleichung ist eine weitere Ungleichung von 1967, welche die gleiche Aussage macht wie die FKG-Ungleichung, jedoch andere Voraussetzungen hat und Anwendung auf dem Gebiet des Ising-Modells hat.[8]

Die Harris-Ungleichung Bearbeiten

Die Harris-Ungleichung ist im Prinzip die FKG-Ungleichung für Produktmaße, benannt nach Theodore E. Harris, welcher sie 1960 beim Studium von Perkolationen in der Ebene gefunden hat.[9]

Wenn   eine totalgeordnete Menge ist, dann ist die Log-Supermodularität automatisch für jedes Maß   auf   erfüllt.

Es gilt zum Beispiel, dass für jede Wahrscheinlichkeitsverteilung   auf  , und monoton wachsende quadratintegrierbaren Funktionen   und  

 

gilt. Dies folgt aus

 

(die Terme in den eckigen Klammern haben das jeweils gleiche Vorzeichen.)

Die Log-Supermodularität ist auch automatisch erfüllt, wenn der Verband ein Produkt totalgeordneter Verbände ist,  , und   ein Produktmaß auf  . In der Anwendung ist   häufig die (Produkt-)Verteilung von unabhängig und identisch verteilten Zufallsvariablen auf unabhängigen Kopien   eines Wahrscheinlichkeitsraumes.

Sei   eine endliche Indexmenge. Sei   versehen mit der koordinatenweisen Ordnung   und mit den Verbands-Operationen:

  sei für alle  ,   definiert über  ,
sowie   entsprechend über  .

Mit diesen Operationen ist   eine Boolesche Algebra.

Sei   ein Wahrscheinlichkeitsmaß auf  . Dann schreibt sich die FKG-Ungleichung

 

für alle monoton wachsenden   für die die Erwartungswerte existieren, wobei   den Erwartungswert bezüglich   bezeichne.[10]

Ein Ereignis   heißt entsprechend wachsend, wenn   für alle   mit  . (Und ein Ereignis heißt fallend, wenn das Komplement   wachsend ist.)

Sind   und   wachsende Ereignisse, so gilt

 

Ein Beweis der Harris-Ungleichung, der auf dem hier verwendeten Doppelintegral-Trick auf   beruht, findet sich in Grimmett 1999.

Beispiele Bearbeiten

 
Wabengitter mit zufällig eingefärbten Waben.

Man färbe zufällig jedes Hexagon des unendlichen Waben-Gitters schwarz jeweils stochastisch unabhängig voneinander mit Wahrscheinlichkeit   und weiß mit Wahrscheinlichkeit  . Seien   vier (nicht notwendig verschiedene) solche Hexagone. Seien   und   die Ereignisse, dass es einen schwarzen Pfad von   nach   respektive von   nach  gibt. Dann besagt die FKG-Ungleichung, dass diese Ereignisse positive korreliert sind:  . In anderen Worten, es wird vorausgesetzt, dass es bereits den einen schwarzen Pfad gibt, wird die Existenz des anderen Pfades wahrscheinlicher.

Im Erdős-Rényi-Zufallsgraph ist die Existenz eines Hamilton-Zyklus negativ korreliert mit der 3-Färbbarkeit des Graphen, da die Wahrscheinlichkeit der Existenz eines Hamilton-Zyklus mit der Anzahl der belegten Verbindungen steigt (steigendes Ereignis), während die Wahrscheinlichkeit von letzterem fällt (fallendes Ereignis).

Die Holley-Ungleichung Bearbeiten

Diese von Richard Holley 1974 entdeckte und gelegentlich als Holley-Ungleichung (englisch Holley inequality) bezeichnete Ungleichung besagt: Seien   und   zwei strikt positive Verteilungen auf einem endlichen distributiven Verband  , welche

  für alle  

erfüllen. Dann gilt

 .

für alle monoton wachsende integrierbaren Funktionen   auf  . Dies ist gleichbedeutend damit, dass   größer als   bezüglich der gewöhnlichen stochastischen Ordnung ist. Thomas Liggett hat einen Beweis für Räume der Form  , welcher auf der Kopplung zweier Markow-Ketten in stetiger Zeit mit   und   als stationären Verteilungen beruht. Er gibt darüber hinaus an, wie der Beweis auf abzählbare Produkträume zu erweitern wäre.[A 3][11][12]

Alternative Voraussetzung für die FKG-Ungleichung Bearbeiten

Sei   versehen mit der koordinatenweisen Halbordnung. Für eine Verteilung   auf   ist folgende Eigenschaft oft leichter zu überprüfen als die Log-Supermodularität:

Fixiert man eine Koordinate   und zwei Konfigurationen   und   in   bezüglich der anderen Koordinaten, so dass   for all  , die auf   bedingte Verteilung von   gegeben   ist stochastisch größer als die auf   bedingte Verteilung von   gegeben  .

Erfüllt   diese Eigenschaft, dann ist   assoziiert.

Die Vier-Funktionen-Ungleichung Bearbeiten

Die im Jahre 1978 vorgelegte Vier-Funktionen-Ungleichung (englisch Ahlswede–Daykin inequality oder auch Four Functions Theorem (FFT)) lässt sich wie folgt formulieren: Seien   nichtnegative reellwertige Funktionen auf  , welche folgende Bedingung erfüllen:

  für alle  

Dann gilt für jedes log-supermodulare Maß   auf  ,

 

Es lässt sich zeigen, dass aus der Vier-Funktionen-Ungleichung Holleys Ungleichung folgt, aus der wiederum die FKG-Ungleichung folgt.[13]

Einzelnachweise Bearbeiten

  1. Rinott und Saks, S. 332.
  2. Grimmet, S. 11.
  3. Fortuin, Kasteleyn, Ginibre, 1971, S. 89.
  4. Ian Anderson: Combinatorics of Finite Sets. 1987, S. 87 ff.
  5. Béla Bollobás: Combinatorics. 1986, S. 143 ff.
  6. Müller, Stoyan, S. 122.
  7. Liggett, S. 79.
  8. Fortuin, Kasteleyn und Ginibre, S. 89.
  9. Harris, S. 13–20.
  10. Fishburn: FKG inequality.
  11. Liggett, S. 77.
  12. Liggett, S. 79.
  13. Rinott und Saks, S. 333.

Anmerkungen Bearbeiten

  1. Dabei sollen Halbordnung und Topologie miteinander verträglich sein, d. h.   sei abgeschlossen. Für diskrete Räume ist dies der Fall.
  2. Man vergleiche hierzu den Artikel Probabilistic method in der englischsprachigen Wikipedia.
  3. Aus der Holley-Ungleichung lässt sich die FKG-Ungleichung durch geschicktes Einsetzen folgern.

Literatur Bearbeiten

Weblinks Bearbeiten