Hauptmenü öffnen
Eine Funktionenfolge, die im nicht-schraffierten Bereich gegen den natürlichen Logarithmus (rot) konvergiert. In diesem speziellen Fall handelt es sich um eine n-te Partialsumme einer Potenzreihe, und n gibt die Anzahl der Summanden an.

Eine Funktionenfolge ist eine Folge, deren einzelne Glieder Funktionen sind. Funktionenfolgen und ihre Konvergenzeigenschaften sind für alle Teilgebiete der Analysis von großer Bedeutung. Vor allem wird hierbei untersucht, in welchem Sinne die Folge konvergiert, ob die Grenzfunktion Eigenschaften der Folge erbt oder ob Grenzwertbildungen bei Funktionenfolgen vertauscht werden können. Zu den wichtigsten Beispielen zählen Reihen von Funktionen wie Potenzreihen, Fourier-Reihen oder Dirichletreihen. Hier spricht man auch von Funktionenreihen.

Inhaltsverzeichnis

DefinitionBearbeiten

Eine (reelle) Funktionenfolge ist eine Folge   von Funktionen  . Allgemeiner können Definitions- und Zielmenge auch andere Mengen sein, beispielsweise Intervalle; sie müssen jedoch für alle Funktionen dieselben sein.

Abstrakt kann eine Funktionenfolge als Abbildung

 

für eine Definitionsmenge   und eine Zielmenge   definiert werden.

BeispieleBearbeiten

Vertauschung Grenzwert und IntegralzeichenBearbeiten

Für die Folge  ,   mit

 

gilt für jedes fixe  

 ,

sie konvergiert punktweise gegen die Nullfunktion. Jedoch gilt für alle  

 

also

 

Punktweise Konvergenz reicht also nicht aus, damit Grenzwert und Integralzeichen vertauscht werden dürfen; damit diese Vertauschung erlaubt ist, ist ein strengeres Konvergenzverhalten, typischerweise gleichmäßige Konvergenz, majorisierte Konvergenz oder monotone Konvergenz, hinreichend.

PotenzreihenBearbeiten

In der Analysis treten Funktionenfolgen häufig als Summen von Funktionen, also als Reihe auf, insbesondere als Potenzreihe oder allgemeiner als Laurentreihe.

Fourieranalyse und ApproximationstheorieBearbeiten

In der Approximationstheorie wird untersucht, wie gut sich Funktionen als Grenzwert von Funktionenfolgen darstellen lassen, wobei insbesondere die quantitative Abschätzung des Fehlers von Interesse ist. Die Funktionenfolgen treten dabei üblicherweise als Funktionenreihen auf, also als Summe  . Beispielsweise konvergieren Fourierreihen im  -Sinn gegen die darzustellende Funktion. Bessere Approximationen im Sinne der gleichmäßigen Konvergenz erhält man oft mit Reihen aus Tschebyschow-Polynomen.

StochastikBearbeiten

In der Stochastik ist eine Zufallsvariable   als messbare Funktion   eines Maßraums   mit einem Wahrscheinlichkeitsmaß   definiert. Folgen   von Zufallsvariablen sind daher spezielle Funktionenfolgen, ebenso sind Statistiken wie z. B. der Stichprobenmittelwert   Funktionenfolgen. Wichtige Konvergenzeigenschaften dieser Funktionenfolgen sind z. B. das starke Gesetze der großen Zahlen und das schwache Gesetz der großen Zahlen.

Numerische MathematikBearbeiten

In der numerischen Mathematik tauchen Funktionenfolgen beispielsweise bei der Lösung von partiellen Differentialgleichungen   auf, wobei   ein (nicht notwendigerweise linearer) Differentialoperator und   die gesuchte Funktion ist. Bei der numerischen Lösung etwa mit der finiten Elementmethode erhält man Funktionen   als Lösung der diskretisierten Version der Gleichung  , wobei   die Feinheit der Diskretisierung bezeichnet. Bei der Analyse des numerischen Algorithmus werden nun die Eigenschaften der diskretisierten Lösungen  , die eine Funktionenfolge bilden, untersucht; insbesondere ist es sinnvoll, dass die Folge der diskretisierten Lösungen   bei Verfeinerung der Diskretisierung gegen die Lösung des Ausgangsproblems konvergiert.

EigenschaftenBearbeiten

MonotonieBearbeiten

Eine Funktionenfolge   heißt monoton wachsend (monoton fallend) auf  , wenn   ( )für alle   ist. Sie heißt monoton, wenn sie entweder monoton fallend oder monoton wachsend ist.

Gleichmäßige BeschränktheitBearbeiten

Eine Funktionenfolge   ist auf einer Menge   gleichmäßig beschränkt, falls eine Konstante   existiert, so dass   für alle   und alle  .

Lokal gleichmäßige BeschränktheitBearbeiten

Eine Funktionenfolge   ist auf einer offenen Menge   lokal gleichmäßig beschränkt, falls zu jedem   eine offene Umgebung   und eine Konstante   existiert, so dass   gilt für alle   und alle  .

KonvergenzbegriffeBearbeiten

Der Grenzwert   einer Funktionenfolge wird Grenzfunktion genannt. Da die in den Anwendungen auftretenden Funktionsfolgen sehr unterschiedliches Verhalten bei wachsendem Index haben können, ist es notwendig, sehr viele verschiedene Konvergenzbegriffe für Funktionenfolgen einzuführen. Von einem abstrakteren Standpunkt handelt es sich meist um die Konvergenz bezüglich gewisser Normen oder allgemeiner Topologien auf den entsprechenden Funktionenräumen; vereinzelt treten aber auch andere Konvergenzbegriffe auf.

Die verschiedenen Konvergenzbegriffe unterscheiden sich vor allem durch die implizierten Eigenschaften der Grenzfunktion. Die wichtigsten sind:

Klassische KonvergenzbegriffeBearbeiten

Punktweise KonvergenzBearbeiten

Existiert der punktweise Grenzwert

 

in jedem Punkt   des Definitionsbereiches, so wird die Funktionenfolge punktweise konvergent genannt. Beispielsweise gilt

 

die Grenzfunktion ist also unstetig.

Gleichmäßige KonvergenzBearbeiten

Eine Funktionenfolge   ist gleichmäßig konvergent gegen eine Funktion  , wenn die maximalen Unterschiede zwischen   und   gegen null konvergieren. Dieser Konvergenzbegriff ist Konvergenz im Sinne der Supremumsnorm.

Gleichmäßige Konvergenz impliziert einige Eigenschaften der Grenzfunktion, wenn die Folgenglieder sie besitzen:

  • Der gleichmäßige Limes stetiger Funktionen ist stetig.
  • Der gleichmäßige Limes einer Folge (Riemann- bzw. Lebesgue-) integrierbarer Funktionen auf einem kompakten Intervall ist (Riemann- bzw. Lebesgue-)integrierbar, und das Integral der Grenzfunktion ist der Limes der Integrale der Folgenglieder: Ist   gleichmäßig konvergent gegen  , so gilt
 
  • Konvergiert eine Folge   differenzierbarer Funktionen punktweise gegen eine Funktion   und ist die Folge der Ableitungen gleichmäßig konvergent, so ist   differenzierbar und es gilt
 

Lokal gleichmäßige KonvergenzBearbeiten

Viele Reihen in der Funktionentheorie, insbesondere Potenzreihen, sind nicht gleichmäßig konvergent, weil die Konvergenz für zunehmende Argumente immer schlechter wird. Verlangt man die gleichmäßige Konvergenz nur lokal, das heißt in einer Umgebung eines jeden Punktes, so kommt man zum Begriff der lokal gleichmäßigen Konvergenz, der für viele Anwendungen in der Analysis ausreicht. Wie bei der gleichmäßigen Konvergenz überträgt sich auch bei lokal gleichmäßiger Konvergenz die Stetigkeit der Folgenglieder auf die Grenzfunktion.

Kompakte KonvergenzBearbeiten

Ein ähnlich guter Konvergenzbegriff ist der der kompakten Konvergenz, der gleichmäßige Konvergenz lediglich auf kompakten Teilmengen fordert. Aus der lokal gleichmäßigen Konvergenz folgt die kompakte Konvergenz; für lokalkompakte Räume, die häufig in Anwendungen auftreten, gilt die Umkehrung.

Normale KonvergenzBearbeiten

In der Mathematik dient der Begriff der normalen Konvergenz der Charakterisierung von unendlichen Reihen von Funktionen. Eingeführt wurde der Begriff von dem französischen Mathematiker René Louis Baire.

Maßtheoretische KonvergenzbegriffeBearbeiten

Bei den maßtheoretischen Konvergenzbegriffen ist die Grenzfunktion üblicherweise nicht eindeutig, sondern nur fast überall eindeutig definiert. Alternativ lässt sich diese Konvergenz auch als Konvergenz von Äquivalenzklassen von Funktionen, die fast überall übereinstimmen, auffassen. Als eine solche Äquivalenzklasse ist dann der Grenzwert eindeutig bestimmt.

Punktweise Konvergenz fast überallBearbeiten

Sind ein Maßraum   und eine Folge darauf messbarer Funktionen   mit Definitionsmenge   gegeben, so wird die Funktionenfolge punktweise konvergent fast überall bezüglich   genannt, wenn der punktweise Grenzwert

 

fast überall bezüglich   existiert, wenn also eine Menge   vom Maß Null ( ) existiert, sodass   eingeschränkt auf das Komplement   punktweise konvergiert.

Die Konvergenz fast überall bezüglich eines Wahrscheinlichkeitsmaßes wird in der Stochastik fast sichere Konvergenz genannt.

Beispielsweise gilt

  punktweise fast überall bezüglich des Lebesgue-Maßes.

Ein anderes Beispiel ist die Funktionenfolge  , wobei für  ,  

 

Diese Folge konvergiert für kein  , da sie für jedes fixe   die Werte 0 und 1 unendlich oft annimmt. Für jede Teilfolge   lässt sich aber eine Teilteilfolge   angegeben, sodass

  punktweise fast überall bezüglich des Lebesgue-Maßes.

Gäbe es eine Topologie der punktweisen Konvergenz fast überall, so würde daraus, dass jede Teilfolge von   eine Teilteilfolge enthält, die gegen 0 konvergiert, folgen, dass   gegen 0 konvergieren muss. Da aber   nicht konvergiert, kann es folglich keine Topologie der Konvergenz fast überall geben. Die punktweise Konvergenz fast überall ist damit ein Beispiel eines Konvergenzbegriffes, der zwar den Fréchet-Axiomen genügt, aber nicht durch eine Topologie erzeugt werden kann.[1]

Konvergenz dem Maße nachBearbeiten

In einem Maßraum   wird eine Folge darauf messbarer Funktionen   konvergent dem Maße nach gegen eine Funktion   genannt, wenn für jedes  

 

gilt.[2]

In einem endlichen Maßraum, also wenn   gilt, ist die Konvergenz dem Maße nach schwächer als die Konvergenz fast überall: Konvergiert eine Folge messbarer Funktionen   fast überall gegen Funktion  , so konvergiert sie auch dem Maße nach gegen  .[3]

In der Stochastik wird die Konvergenz dem Maße nach als Stochastische Konvergenz oder als Konvergenz in Wahrscheinlichkeit bezeichnet.[4]

Eine Abschwächung der Konvergenz dem Maße nach ist die Konvergenz lokal nach Maß. Auf endlichen Maßräumen stimmen beide Begriffe überein.

Lp-Konvergenz und Konvergenz in Sobolew-RäumenBearbeiten

Eine Funktionenfolge   heißt   konvergent gegen   oder konvergent im p-ten Mittel, wenn sie im Sinne des entsprechenden Lp-Raums   konvergiert, wenn also

 

Ist   ein endliches Maß, gilt also  , so folgt für   aus der Ungleichung der verallgemeinerten Mittelwerte, dass eine Konstante   existiert, sodass  ; insbesondere folgt dann also aus der  -Konvergenz von   gegen   auch die  -Konvergenz von   gegen  .

Aus der  -Konvergenz folgt die Konvergenz dem Maße nach, wie man aus der Tschebyschow-Ungleichung in der Form

 

sieht.[5]

Eine Verallgemeinerung der Lp-Konvergenz ist die Konvergenz in Sobolew-Räumen, die nicht nur die Konvergenz der Funktionswerte, sondern auch die Konvergenz gewisser Ableitungen berücksichtigt. Der Sobolewschen Einbettungssatz beschreibt die Abhängigkeiten der Konvergenzbegriffe in den unterschiedlichen Sobolew-Räumen.

Fast gleichmäßige KonvergenzBearbeiten

In einem Maßraum   wird eine Folge darauf messbarer reell- oder komplexwertiger Funktionen   fast gleichmäßig konvergent gegen eine Funktion   genannt, wenn für jedes   eine Menge   existiert, sodass   und   auf dem Komplement   gleichmäßig gegen   konvergiert.[6]

Aus der fast gleichmäßigen Konvergenz folgt die punktweise Konvergenz fast überall [7]; aus dem Satz von Jegorow folgt, dass in einem endlichen Maßraum auch umgekehrt aus der punktweisen Konvergenz fast überall die fast gleichmäßige Konvergenz folgt.[8] In einem endlichen Maßraum, also insbesondere für reellwertige Zufallsvariablen, sind Konvergenz fast überall und fast gleichmäßige Konvergenz von reellwertigen Funktionenfolgen äquivalent.

Aus der fast gleichmäßigen Konvergenz folgt außerdem die Konvergenz dem Maße nach [7]. Umgekehrt gilt, dass eine dem Maße nach konvergente Folge eine Teilfolge enthält, die fast gleichmäßig (und damit auch fast überall) gegen die gleiche Grenzfolge konvergiert.[9]

Fast überall gleichmäßige KonvergenzBearbeiten

In einem Maßraum   wird eine Folge darauf messbarer reell- oder komplexwertiger Funktionen   fast überall gleichmäßig konvergent gegen eine Funktion   genannt, wenn es eine Nullmenge   gibt, sodass   auf dem Komplement   gleichmäßig gegen   konvergiert. Für Folgen beschränkter Funktionen ist das im Wesentlichen die Konvergenz im Raum  . Fast überall gleichmäßige Konvergenz kann wegen der sehr ähnlichen Bezeichnung leicht mit fast gleichmäßiger Konvergenz verwechselt werden, wie Paul Halmos in seinem Lehrbuch zur Maßtheorie kritisiert.[10]

Schwache KonvergenzBearbeiten

Die schwache Konvergenz für Funktionenfolgen ist ein Spezialfall der schwachen Konvergenz im Sinne der Funktionalanalysis, die allgemein für normierte Räume definiert wird. Zu beachten ist, dass es in der Funktionalanalysis, der Maßtheorie und der Stochastik mehrere verschiedene Konzepte von schwacher Konvergenz gibt, die nicht miteinander verwechselt werden sollten.

Für   heißt eine Funktionenfolge   aus   schwach konvergent gegen  , wenn für alle   gilt, dass

 

ist. Dabei ist   durch   definiert.

Übersicht über die maßtheoretischen KonvergenzartenBearbeiten

 
Die maßtheoretischen Konvergenzarten im Überblick

Die nebenstehende Übersicht entstammt dem Lehrbuch Einführung in die Maßtheorie von Ernst Henze, der dafür seinerseits auf ältere Vorgänger verweist.[11] Sie verdeutlicht die logischen Beziehungen zwischen den Konvergenzarten für eine Folge messbarer Funktionen auf einem Maßraum  . Ein schwarzer, durchgehender Pfeil bedeutet, dass die Konvergenzart an der Pfeilspitze aus der Konvergenzart am Pfeilursprung folgt. Für die blauen gestrichelten Pfeile gilt dies nur, wenn   vorausgesetzt ist. Für die roten Strichpunktpfeile gilt die Implikation, wenn die Folge durch eine  -integrierbare Funktion beschränkt ist.

Hierarchische Ordnung Konvergenzbegriffe in Räumen mit endlichem MaßBearbeiten

In Maßräumen   mit endlichem Maß, wenn also   gilt, ist es großteils möglich, die unterschiedlichen Konvergenzbegriffe nach ihrer Stärke zu ordnen. Dies gilt insbesondere in Wahrscheinlichkeitsräumen, da dort ja   gilt.

Aus der gleichmäßigen Konvergenz folgt die Konvergenz dem Maße nach auf zwei unterschiedlichen Wegen, der eine führt über die punktweise Konvergenz:

  •   gleichmäßig   lokal gleichmäßig (d. h. gleichmäßig auf einer Umgebung eines jeden Punktes).
  •   lokal gleichmäßig   kompakt (d. h. gleichmäßig auf jeder kompakten Teilmenge).
  •   kompakt   punktweise (jeder einzelne Punkt ist ja eine kompakte Teilmenge).
  •   punktweise   punktweise fast überall (bzw. fast sicher).
  •   punktweise fast überall   fast gleichmäßig.
  •   fast gleichmäßig   dem Maße nach (bzw. stochastisch oder in Wahrscheinlichkeit).

Der andere Weg von der gleichmäßigen Konvergenz zur Konvergenz dem Maße nach führt über die  -Konvergenz:

  •   gleichmäßig   in  .
  •   in     in   für alle reellen  .
  •   in     in   für alle reellen  .
  •   in   für   dem Maße nach (bzw. stochastisch oder in Wahrscheinlichkeit).

Von der Konvergenz dem Maße nach gelangt man zur schwachen Konvergenz:

  •   dem Maße nach   schwach (bzw. in Verteilung).

Wichtige Theoreme über FunktionenfolgenBearbeiten

LiteraturBearbeiten

  • Heinz Bauer: Maß- und Integrationstheorie. 2. Auflage. De Gruyter, Berlin 1992, ISBN 3-11-013626-0 (Gebunden), ISBN 3-11-013625-2 (Broschiert), ab S. 91 (§15 Konvergenzsätze) und ab S. 128 (§20 Stochastische Konvergenz).
  • Jürgen Elstrodt: Maß- und Integrationstheorie 4. Auflage. Springer, Berlin 2005, ISBN 3-540-21390-2, (Beschreibt ausführlich die Zusammenhänge zwischen den verschiedenen Konvergenzarten).

EinzelnachweiseBearbeiten

  1. J. Cigler, H.-C. Reichel: Topologie. Eine Grundvorlesung. Bibliographisches Institut, Mannheim 1978. ISBN 3-411-00121-6. S. 88, Aufgabe 6
  2. A.N. Kolmogorow und S.V. Fomin: Reelle Funktionen und Funktionalanalysis. Deutscher Verlag der Wissenschaften, Berlin 1975, 5.4.6, Definition 4.
  3. A.N. Kolmogorow und S.V. Fomin: Reelle Funktionen und Funktionalanalysis. Deutscher Verlag der Wissenschaften, Berlin 1975, 5.4.6, Satz 7.
  4. Marek Fisz: Wahrscheinlichkeitsrechnung und mathematische Statistik. Deutscher Verlag der Wissenschaften, Berlin 1989, S. 212.
  5. Robert B. Ash: Real Analysis and Probability. Academic Press, New York 1972. ISBN 0-12-065201-3. Theorem 2.5.1.
  6. Robert B. Ash: Real Analysis and Probability. Academic Press, New York 1972. ISBN 0-12-065201-3. S. 93.
  7. a b Robert B. Ash: Real Analysis and Probability. Academic Press, New York 1972. ISBN 0-12-065201-3. Theorem 2.5.2.
  8. Robert B. Ash: Real Analysis and Probability. Academic Press, New York 1972. ISBN 0-12-065201-3. Theorem 2.5.5.
  9. Robert B. Ash: Real Analysis and Probability. Academic Press, New York 1972. ISBN 0-12-065201-3. Theorem 2.5.3.
  10. Paul Halmos: Measure Theory, Springer-Verlag, Graduate Texts in Mathematics, ISBN 978-1-4684-9442-6, §22, Seite 90
  11. Ernst Henze: Einführung in die Maßtheorie, BI, Mannheim,1971, ISBN 3-411-03102-6, Kapitel 4.6, Seite 146