Jordan-Chevalley-Zerlegung

mathematischer Satz

Die Jordan-Chevalley-Zerlegung (gelegentlich auch Dunford-Zerlegung) ist wichtig für das Studium von Lie-Algebren und algebraischen Gruppen. Benannt ist sie nach Marie Ennemond Camille Jordan und Claude Chevalley.

Unter der (additiven) Jordan-Chevalley-Zerlegung eines Endomorphismus eines endlichdimensionalen Vektorraums über einem algebraisch abgeschlossenen Körper versteht man die Summe , worin ein halbeinfacher (also diagonalisierbarer) und ein nilpotenter Endomorphismus sind, die miteinander kommutieren, das heißt .

Ist allgemeiner eine halbeinfache Lie-Algebra (mit Lie-Klammer ) über einem algebraisch abgeschlossenen Körper der Charakteristik 0 und , so bezeichnet man als (additive abstrakte) Jordan-Chevalley-Zerlegung, falls gilt: Der Endomorphismus ist halbeinfach, der Endomorphismus ist nilpotent, und es gilt . Darin wird für jedes die Abbildung folgendermaßen definiert:

,

welches ein Endomorphismus von ist.

Die Jordan-Chevalley-Zerlegung existiert in den oben angegebenen Fällen und ist eindeutig. Zudem stimmen beide Definitionen im Fall , versehen mit der Lie-Klammer , überein.

Die multiplikative Zerlegung stellt einen invertierbaren Operator als Produkt seiner kommutierenden halbeinfachen und unipotenten Anteile dar. Diese erhält man leicht aus der oben angegebenen additiven Zerlegung:

.

Man beachte, dass invertierbar ist, denn kann als invertierbarer Endomorphismus nicht den Eigenwert 0 haben, und dass wegen der Vertauschbarkeit der Faktoren ebenfalls nilpotent und damit unipotent ist.

Siehe auch Bearbeiten

Literatur Bearbeiten

Weblinks Bearbeiten