Operatoren wie
I
1
{\displaystyle \mathrm {I} _{1}}
werden nicht kursiv geschrieben.
Buchstaben die als Indizes benutzt werden:
i
,
j
,
k
,
l
,
m
,
n
∈
{
1
,
2
,
3
}
{\displaystyle i,j,k,l,m,n\in \{1,2,3\}}
. Ausnahme: Die imaginäre Einheit
i
2
=
−
1
{\displaystyle \mathrm {i} ^{2}=-1}
und die #Vektorinvariante
i
→
{\displaystyle {\vec {\mathrm {i} }}}
werden in Abgrenzung zu den Indizes nicht kursiv geschrieben.
p
,
q
,
r
,
s
∈
{
1
,
2
,
…
,
9
}
{\displaystyle p,q,r,s\in \{1,2,\ldots ,9\}}
u
,
v
∈
{
1
,
2
,
…
,
6
}
{\displaystyle u,v\in \{1,2,\ldots ,6\}}
Alle anderen Buchstaben stehen für reelle Zahlen oder komplexe Zahlen .
Vektoren:
Alle hier verwendeten Vektoren sind geometrische Vektoren im dreidimensionalen euklidischen Vektorraum
V
{\displaystyle \mathbb {V} }
.
Vektoren werden mit Kleinbuchstaben bezeichnet. Ausnahme #Dualer axialer Vektor
A
→
A
{\displaystyle {\stackrel {A}{\overrightarrow {\mathbf {A} }}}}
Einheitsvektoren mit Länge eins werden wie in ê mit einem Hut versehen. Die Standardbasis von
V
{\displaystyle \mathbb {V} }
ist ê1,2,3 .
Vektoren mit unbestimmter Länge werden wie in
a
→
{\displaystyle {\vec {a}}}
mit einem Pfeil versehen.
Dreiergruppen von Vektoren wie in
h
→
1
,
h
→
2
,
h
→
3
{\displaystyle {\vec {h}}_{1},{\vec {h}}_{2},{\vec {h}}_{3}}
oder
g
→
1
,
g
→
2
,
g
→
3
{\displaystyle {\vec {g}}^{1},{\vec {g}}^{2},{\vec {g}}^{3}}
bezeichnen eine rechtshändige Basis von
V
{\displaystyle \mathbb {V} }
.
Gleichnamige Basisvektoren mit unterem und oberem Index sind dual zueinander, z. B.
g
→
1
,
g
→
2
,
g
→
3
{\displaystyle {\vec {g}}_{1},{\vec {g}}_{2},{\vec {g}}_{3}}
ist dual zu
g
→
1
,
g
→
2
,
g
→
3
{\displaystyle {\vec {g}}^{1},{\vec {g}}^{2},{\vec {g}}^{3}}
.
Tensoren zweiter Stufe werden wie in A mit fetten Großbuchstaben notiert. Die Menge aller Tensoren wird mit
L
:=
L
i
n
(
V
,
V
)
{\displaystyle {\mathcal {L}}:=\mathrm {Lin} (\mathbb {V} ,\mathbb {V} )}
bezeichnet. Tensoren höherer Stufe werden mit einer hochgestellten Zahl wie in
C
4
{\displaystyle {\stackrel {4}{\mathbf {C} }}}
geschrieben. Tensoren vierter Stufe sind Elemente der Menge
L
4
:=
L
i
n
(
L
,
L
)
{\displaystyle {\stackrel {4}{\mathcal {L}}}:=\mathrm {Lin} ({\mathcal {L}},{\mathcal {L}})}
.
Es gilt die Einstein'sche Summenkonvention ohne Beachtung der Indexstellung.
Kommt in einer Formel in einem Produkt ein Index doppelt vor wie in
c
=
a
i
b
i
{\displaystyle c=a_{i}b^{i}}
wird über diesen Index summiert:
c
=
a
i
b
i
=
∑
i
=
1
3
a
i
b
i
{\displaystyle c=a_{i}b^{i}=\sum _{i=1}^{3}a_{i}b^{i}}
.
Kommen mehrere Indizes doppelt vor wie in
c
=
A
p
q
B
q
p
{\displaystyle c=A_{pq}B_{q}^{p}}
wird über diese summiert:
c
=
A
p
q
B
q
p
=
∑
p
=
1
9
∑
q
=
1
9
A
p
q
B
q
p
{\displaystyle c=A_{pq}B_{q}^{p}=\sum _{p=1}^{9}\sum _{q=1}^{9}A_{pq}B_{q}^{p}}
.
Ein Index, der nur einfach vorkommt wie
u
{\displaystyle u}
in
a
u
=
A
u
v
b
v
{\displaystyle a_{u}=A_{uv}b_{v}}
, ist ein freier Index. Die Formel gilt dann für alle Werte der freien Indizes:
a
u
=
A
u
v
b
v
↔
a
u
=
∑
v
=
1
6
A
u
v
b
v
∀
u
∈
{
1
,
…
,
6
}
{\displaystyle a_{u}=A_{uv}b_{v}\quad \leftrightarrow \quad a_{u}=\sum _{v=1}^{6}A_{uv}b_{v}\quad \forall \;u\in \{1,\ldots ,6\}}
.
Reservierte und besondere Symbole
Bearbeiten
Zeichen für Operatoren
Bearbeiten
Formelzeichen
Abschnitt in der Formelsammlung
Wikipedia-Artikel
S
p
,
t
r
,
I
1
{\displaystyle \mathrm {Sp,tr,I} _{1}}
#Spur
Spur (Mathematik) , Hauptinvariante
I
2
{\displaystyle \mathrm {I} _{2}}
#Zweite Hauptinvariante
Hauptinvariante
d
e
t
,
I
3
,
|
A
|
{\displaystyle \mathrm {det,I} _{3},|\mathbf {A} |}
#Determinante
Determinante , Hauptinvariante
sym
#Symmetrischer Anteil
Symmetrische Matrix
skw, skew
#Schiefsymmetrischer Anteil
Schiefsymmetrische Matrix
adj
#Adjunkte
Adjunkte
cof
#Kofaktor
Minor (Mathematik)#Kofaktormatrix
dev
#Deviator
Deviator , Spannungsdeviator
sph
#Kugelanteil
Kugeltensor
Formelzeichen
Elemente
R
{\displaystyle \mathbb {R} }
Reelle Zahlen
C
{\displaystyle \mathbb {C} }
Komplexe Zahlen
V
{\displaystyle \mathbb {V} }
Vektoren
L
=
L
i
n
(
V
,
V
)
{\displaystyle {\mathcal {L}}=\mathrm {Lin} (\mathbb {V,V} )}
Tensoren zweiter Stufe
L
4
=
L
i
n
(
L
,
L
)
{\displaystyle {\stackrel {4}{\mathcal {L}}}=\mathrm {Lin} ({\mathcal {L,L}})}
#Tensoren vierter Stufe
δ
i
j
=
δ
i
j
=
δ
i
j
=
δ
j
i
=
{
1
f
a
l
l
s
i
=
j
0
s
o
n
s
t
{\displaystyle \delta _{ij}=\delta ^{ij}=\delta _{i}^{j}=\delta _{j}^{i}={\begin{cases}1&\mathrm {falls} \quad i=j\\0&\mathrm {sonst} \end{cases}}}
Für Summen gilt dann z. B.
v
i
δ
i
j
=
v
j
{\displaystyle v_{i}\delta _{ij}=v_{j}}
A
i
j
δ
i
j
=
A
i
i
{\displaystyle A_{ij}\delta _{ij}=A_{ii}}
Dies gilt für die anderen Indexgruppen entsprechend.
ϵ
i
j
k
=
e
^
i
⋅
(
e
^
j
×
e
^
k
)
=
{
1
falls
(
i
,
j
,
k
)
∈
{
(
1
,
2
,
3
)
,
(
2
,
3
,
1
)
,
(
3
,
1
,
2
)
}
−
1
falls
(
i
,
j
,
k
)
∈
{
(
1
,
3
,
2
)
,
(
2
,
1
,
3
)
,
(
3
,
2
,
1
)
}
0
sonst, d.h. bei doppeltem Index
{\displaystyle \epsilon _{ijk}={\hat {e}}_{i}\cdot ({\hat {e}}_{j}\times {\hat {e}}_{k})={\begin{cases}1&{\text{falls}}\;(i,j,k)\in \{(1,2,3),(2,3,1),(3,1,2)\}\\-1&{\text{falls}}\;(i,j,k)\in \{(1,3,2),(2,1,3),(3,2,1)\}\\0&{\text{sonst, d.h. bei doppeltem Index}}\end{cases}}}
ϵ
i
j
k
ϵ
l
m
n
=
|
δ
i
l
δ
j
l
δ
k
l
δ
i
m
δ
j
m
δ
k
m
δ
i
n
δ
j
n
δ
k
n
|
{\displaystyle \epsilon _{ijk}\epsilon _{lmn}={\begin{vmatrix}\delta _{il}&\delta _{jl}&\delta _{kl}\\\delta _{im}&\delta _{jm}&\delta _{km}\\\delta _{in}&\delta _{jn}&\delta _{kn}\end{vmatrix}}}
ϵ
i
j
k
ϵ
k
l
m
=
δ
i
l
δ
j
m
−
δ
i
m
δ
j
l
{\displaystyle \epsilon _{ijk}\epsilon _{klm}=\delta _{il}\delta _{jm}-\delta _{im}\delta _{jl}}
ϵ
i
j
k
ϵ
j
k
l
=
2
δ
i
l
{\displaystyle \epsilon _{ijk}\epsilon _{jkl}=2\delta _{il}}
ϵ
i
j
k
ϵ
i
j
k
=
6
{\displaystyle \epsilon _{ijk}\epsilon _{ijk}=6}
Kreuzprodukt:
a
i
e
^
i
×
b
j
e
^
j
=
ϵ
i
j
k
a
i
b
j
e
^
k
=
ϵ
i
j
k
a
j
b
k
e
^
i
=
ϵ
i
j
k
a
k
b
i
e
^
j
{\displaystyle a_{i}{\hat {e}}_{i}\times b_{j}{\hat {e}}_{j}=\epsilon _{ijk}a_{i}b_{j}{\hat {e}}_{k}=\epsilon _{ijk}a_{j}b_{k}{\hat {e}}_{i}=\epsilon _{ijk}a_{k}b_{i}{\hat {e}}_{j}}
ϵ
i
j
k
e
^
k
=
e
^
i
×
e
^
j
{\displaystyle \epsilon _{ijk}{\hat {e}}_{k}={\hat {e}}_{i}\times {\hat {e}}_{j}}
Spaltenvektoren und Matrizen
Bearbeiten
Die hier verwendeten Vektoren sind Spaltenvektoren
a
→
=
a
i
e
^
i
=
(
a
1
a
2
a
3
)
{\displaystyle {\vec {a}}=a_{i}{\hat {e}}_{i}={\begin{pmatrix}a_{1}\\a_{2}\\a_{3}\end{pmatrix}}}
Drei Vektoren
a
→
,
b
→
,
c
→
{\displaystyle {\vec {a}},{\vec {b}},{\vec {c}}}
können spaltenweise in einer 3×3-Matrix
M
{\displaystyle M}
arrangiert werden:
M
=
(
a
→
b
→
c
→
)
=
(
a
1
b
1
c
1
a
2
b
2
c
2
a
3
b
3
c
3
)
{\displaystyle M={\begin{pmatrix}{\vec {a}}&{\vec {b}}&{\vec {c}}\end{pmatrix}}={\begin{pmatrix}a_{1}&b_{1}&c_{1}\\a_{2}&b_{2}&c_{2}\\a_{3}&b_{3}&c_{3}\end{pmatrix}}}
Die Determinante der Matrix
|
M
|
=
|
a
→
b
→
c
→
|
{\displaystyle |M|={\begin{vmatrix}{\vec {a}}&{\vec {b}}&{\vec {c}}\end{vmatrix}}}
ist
Also gewährleistet
|
a
→
b
→
c
→
|
>
0
{\displaystyle {\begin{vmatrix}{\vec {a}}&{\vec {b}}&{\vec {c}}\end{vmatrix}}>0}
, dass die Vektoren
a
→
,
b
→
,
c
→
{\displaystyle {\vec {a}},{\vec {b}},{\vec {c}}}
eine rechtshändige Basis bilden.
Die Spaltenvektoren bilden eine Orthonormalbasis , wenn
M
⊤
M
=
(
1
0
0
0
1
0
0
0
1
)
{\displaystyle M^{\top }M={\begin{pmatrix}1&0&0\\0&1&0\\0&0&1\end{pmatrix}}}
worin
M
⊤
{\displaystyle M^{\top }}
die transponierte Matrix ist. Bei der hier vorausgesetzten Rechtshändigkeit gilt dann zusätzlich
|
M
|
=
+
1
{\displaystyle |M|=+1}
.
Basis und Duale Basis
Bearbeiten
Basisvektoren
g
→
1
,
g
→
2
,
g
→
3
{\displaystyle {\vec {g}}_{1},{\vec {g}}_{2},{\vec {g}}_{3}}
Duale Basisvektoren
g
→
1
,
g
→
2
,
g
→
3
{\displaystyle {\vec {g}}^{1},{\vec {g}}^{2},{\vec {g}}^{3}}
Beziehungen zwischen den Basisvektoren
g
→
i
⋅
g
→
j
=
δ
i
j
{\displaystyle {\vec {g}}_{i}\cdot {\vec {g}}^{j}=\delta _{i}^{j}}
g
→
1
=
g
→
2
×
g
→
3
(
g
→
1
,
g
→
2
,
g
→
3
)
,
g
2
=
g
→
3
×
g
→
1
(
g
→
1
,
g
→
2
,
g
→
3
)
,
g
3
=
g
→
1
×
g
→
2
(
g
→
1
,
g
→
2
,
g
→
3
)
{\displaystyle {\vec {g}}^{1}={\frac {{\vec {g}}_{2}\times {\vec {g}}_{3}}{({\vec {g}}_{1},{\vec {g}}_{2},{\vec {g}}_{3})}},\quad g^{2}={\frac {{\vec {g}}_{3}\times {\vec {g}}_{1}}{({\vec {g}}_{1},{\vec {g}}_{2},{\vec {g}}_{3})}},\quad g^{3}={\frac {{\vec {g}}_{1}\times {\vec {g}}_{2}}{({\vec {g}}_{1},{\vec {g}}_{2},{\vec {g}}_{3})}}}
g
→
1
=
g
→
2
×
g
→
3
(
g
→
1
,
g
→
2
,
g
→
3
)
,
g
2
=
g
→
3
×
g
→
1
(
g
→
1
,
g
→
2
,
g
→
3
)
,
g
3
=
g
→
1
×
g
→
2
(
g
→
1
,
g
→
2
,
g
→
3
)
{\displaystyle {\vec {g}}_{1}={\frac {{\vec {g}}^{2}\times {\vec {g}}^{3}}{({\vec {g}}^{1},{\vec {g}}^{2},{\vec {g}}^{3})}},\quad g_{2}={\frac {{\vec {g}}^{3}\times {\vec {g}}^{1}}{({\vec {g}}^{1},{\vec {g}}^{2},{\vec {g}}^{3})}},\quad g_{3}={\frac {{\vec {g}}^{1}\times {\vec {g}}^{2}}{({\vec {g}}^{1},{\vec {g}}^{2},{\vec {g}}^{3})}}}
mit dem Spatprodukt
(
a
→
,
b
→
,
c
→
)
:=
a
→
⋅
(
b
→
×
c
→
)
=
c
→
⋅
(
a
→
×
b
→
)
=
b
→
⋅
(
c
→
×
a
→
)
=
|
a
→
b
→
c
→
|
{\displaystyle ({\vec {a}},{\vec {b}},{\vec {c}}):={\vec {a}}\cdot ({\vec {b}}\times {\vec {c}})={\vec {c}}\cdot ({\vec {a}}\times {\vec {b}})={\vec {b}}\cdot ({\vec {c}}\times {\vec {a}})={\begin{vmatrix}{\vec {a}}&{\vec {b}}&{\vec {c}}\end{vmatrix}}}
Trägt man die Basisvektoren spaltenweise in eine Matrix ein, dann finden sich die dualen Basisvektoren in den Zeilen der Inversen oder den Spalten der #transponiert #Inversen
(
)
⊤
−
1
{\displaystyle ()^{\top -1}}
:
(
g
→
1
g
→
2
g
→
3
)
=
(
g
→
1
g
→
2
g
→
3
)
⊤
−
1
{\displaystyle {\begin{pmatrix}{\vec {g}}^{1}&{\vec {g}}^{2}&{\vec {g}}^{3}\end{pmatrix}}={\begin{pmatrix}{\vec {g}}_{1}&{\vec {g}}_{2}&{\vec {g}}_{3}\end{pmatrix}}^{\top -1}}
In der Standardbasis wie in jeder Orthonormalbasis sind die Basisvektoren
e
^
1
,
e
^
2
,
e
^
3
{\displaystyle {\hat {e}}_{1},{\hat {e}}_{2},{\hat {e}}_{3}}
zu sich selbst dual:
e
^
i
=
e
^
i
{\displaystyle {\hat {e}}_{i}={\hat {e}}^{i}}
Berechnung von Vektorkomponenten
Bearbeiten
v
→
=
v
i
e
^
i
→
v
i
=
v
→
⋅
e
^
i
{\displaystyle {\vec {v}}=v_{i}{\hat {e}}_{i}\quad \rightarrow \;v_{i}={\vec {v}}\cdot {\hat {e}}_{i}}
v
→
=
v
i
g
→
i
→
v
i
=
v
→
⋅
g
→
i
{\displaystyle {\vec {v}}=v^{i}{\vec {g}}_{i}\quad \rightarrow \;v^{i}={\vec {v}}\cdot {\vec {g}}^{i}}
v
→
=
v
i
g
→
i
→
v
i
=
v
→
⋅
g
→
i
{\displaystyle {\vec {v}}=v_{i}{\vec {g}}^{i}\quad \rightarrow \;v_{i}={\vec {v}}\cdot {\vec {g}}_{i}}
Beziehung zwischen den Skalarprodukten der Basisvektoren
Bearbeiten
(
g
→
i
⋅
g
→
k
)
(
g
→
k
⋅
g
→
j
)
=
g
→
i
⋅
(
g
→
j
⋅
g
→
k
)
g
→
k
=
g
→
i
⋅
g
→
j
=
δ
i
j
{\displaystyle ({\vec {g}}_{i}\cdot {\vec {g}}_{k})({\vec {g}}^{k}\cdot {\vec {g}}^{j})={\vec {g}}_{i}\cdot ({\vec {g}}^{j}\cdot {\vec {g}}^{k}){\vec {g}}_{k}={\vec {g}}_{i}\cdot {\vec {g}}^{j}=\delta _{i}^{j}}
Wechsel der Basis bei Vektoren
Bearbeiten
Wechsel von
Basis
g
→
1
,
g
→
2
,
g
→
3
{\displaystyle {\vec {g}}^{1},{\vec {g}}^{2},{\vec {g}}^{3}}
mit dualer Basis
g
→
1
,
g
→
2
,
g
→
3
{\displaystyle {\vec {g}}_{1},{\vec {g}}_{2},{\vec {g}}_{3}}
nach
Basis
h
→
1
,
h
→
2
,
h
→
3
{\displaystyle {\vec {h}}^{1},{\vec {h}}^{2},{\vec {h}}^{3}}
mit dualer Basis
h
→
1
,
h
→
2
,
h
→
3
{\displaystyle {\vec {h}}_{1},{\vec {h}}_{2},{\vec {h}}_{3}}
:
v
→
=
v
i
g
→
i
=
v
i
∗
h
→
i
→
v
i
∗
=
(
h
→
i
⋅
g
→
j
)
v
j
{\displaystyle {\vec {v}}=v_{i}\,{\vec {g}}^{i}=v_{i}^{\ast }\,{\vec {h}}^{i}\quad \rightarrow \;v_{i}^{\ast }=({\vec {h}}_{i}\cdot {\vec {g}}^{j})v_{j}}
Matrizengleichung:
(
v
1
∗
v
2
∗
v
3
∗
)
=
(
h
→
1
⋅
g
→
1
h
→
1
⋅
g
→
2
h
→
1
⋅
g
→
3
h
→
2
⋅
g
→
1
h
→
2
⋅
g
→
2
h
→
2
⋅
g
→
3
h
→
3
⋅
g
→
1
h
→
3
⋅
g
→
2
h
→
3
⋅
g
→
3
)
(
v
1
v
2
v
3
)
=
(
h
→
1
h
→
2
h
→
3
)
⊤
(
g
→
1
g
→
2
g
→
3
)
(
v
1
v
2
v
3
)
{\displaystyle {\begin{aligned}{\begin{pmatrix}v_{1}^{\ast }\\v_{2}^{\ast }\\v_{3}^{\ast }\end{pmatrix}}=&{\begin{pmatrix}{\vec {h}}_{1}\cdot {\vec {g}}^{1}&{\vec {h}}_{1}\cdot {\vec {g}}^{2}&{\vec {h}}_{1}\cdot {\vec {g}}^{3}\\{\vec {h}}_{2}\cdot {\vec {g}}^{1}&{\vec {h}}_{2}\cdot {\vec {g}}^{2}&{\vec {h}}_{2}\cdot {\vec {g}}^{3}\\{\vec {h}}_{3}\cdot {\vec {g}}^{1}&{\vec {h}}_{3}\cdot {\vec {g}}^{2}&{\vec {h}}_{3}\cdot {\vec {g}}^{3}\end{pmatrix}}{\begin{pmatrix}v_{1}\\v_{2}\\v_{3}\end{pmatrix}}\\=&{\begin{pmatrix}{\vec {h}}_{1}&{\vec {h}}_{2}&{\vec {h}}_{3}\end{pmatrix}}^{\top }{\begin{pmatrix}{\vec {g}}^{1}&{\vec {g}}^{2}&{\vec {g}}^{3}\end{pmatrix}}{\begin{pmatrix}v_{1}\\v_{2}\\v_{3}\end{pmatrix}}\end{aligned}}}
Durch die Eigenschaften des dyadischen Produktes wird
L
{\displaystyle {\mathcal {L}}}
zu einem euklidischen Vektorraum und entsprechend kann jeder Tensor komponentenweise bezüglich einer Basis von
L
{\displaystyle {\mathcal {L}}}
dargestellt werden:
A
∈
L
→
A
=
A
i
j
e
^
i
⊗
e
^
j
=
A
i
j
a
→
i
⊗
g
→
j
{\displaystyle \mathbf {A} \in {\mathcal {L}}\rightarrow \mathbf {A} =A_{ij}{\hat {e}}_{i}\otimes {\hat {e}}_{j}=A^{ij}{\vec {a}}_{i}\otimes {\vec {g}}_{j}}
mit Komponenten
A
i
j
,
A
i
j
∈
R
{\displaystyle A_{ij},A^{ij}\in \mathbb {R} }
.Die Dyaden
{
e
^
i
⊗
e
^
j
|
i
,
j
=
1
,
2
,
3
}
{\displaystyle \{{\hat {e}}_{i}\otimes {\hat {e}}_{j}|i,j=1,2,3\}}
und
{
a
→
i
⊗
g
→
j
|
i
,
j
=
1
,
2
,
3
}
{\displaystyle \{{\vec {a}}_{i}\otimes {\vec {g}}_{j}|i,j=1,2,3\}}
bilden Basissysteme von
L
{\displaystyle {\mathcal {L}}}
.
Abbildung
L
→
L
{\displaystyle {\mathcal {L}}\to {\mathcal {L}}}
(
a
→
⊗
g
→
)
⊤
:=
g
→
⊗
a
→
{\displaystyle ({\vec {a}}\otimes {\vec {g}})^{\top }:={\vec {g}}\otimes {\vec {a}}}
(
A
i
j
e
^
i
⊗
e
^
j
)
⊤
=
A
i
j
(
e
^
j
⊗
e
^
i
)
=
A
j
i
(
e
^
i
⊗
e
^
j
)
{\displaystyle (A_{ij}{\hat {e}}_{i}\otimes {\hat {e}}_{j})^{\top }=A_{ij}({\hat {e}}_{j}\otimes {\hat {e}}_{i})=A_{ji}({\hat {e}}_{i}\otimes {\hat {e}}_{j})}
(
A
i
j
a
→
i
⊗
g
→
j
)
⊤
=
A
i
j
(
g
→
j
⊗
a
→
i
)
=
A
j
i
(
g
→
i
⊗
a
→
j
)
{\displaystyle (A^{ij}{\vec {a}}_{i}\otimes {\vec {g}}_{j})^{\top }=A^{ij}({\vec {g}}_{j}\otimes {\vec {a}}_{i})=A^{ji}({\vec {g}}_{i}\otimes {\vec {a}}_{j})}
(
A
⊤
)
⊤
=
A
{\displaystyle \left(\mathbf {A} ^{\top }\right)^{\top }=\mathbf {A} }
(
A
+
B
)
⊤
=
A
⊤
+
B
⊤
{\displaystyle (\mathbf {A+B} )^{\top }=\mathbf {A} ^{\top }+\mathbf {B} ^{\top }}
(
A
⋅
B
)
⊤
=
B
⊤
⋅
A
⊤
{\displaystyle (\mathbf {A\cdot B} )^{\top }=\mathbf {B} ^{\top }\cdot \mathbf {A} ^{\top }}
Vektortransformation
Bearbeiten
Abbildung
L
×
V
→
V
{\displaystyle {\mathcal {L}}\times \mathbb {V} \to \mathbb {V} }
oder
V
×
L
→
V
{\displaystyle \mathbb {V} \times {\mathcal {L}}\to \mathbb {V} }
Dyaden:
(
a
→
⊗
g
→
)
⋅
h
→
:=
(
g
→
⋅
h
→
)
a
→
{\displaystyle ({\vec {a}}\otimes {\vec {g}})\cdot {\vec {h}}:=({\vec {g}}\cdot {\vec {h}}){\vec {a}}}
b
→
⋅
(
a
→
⊗
g
→
)
:=
(
a
→
⋅
b
→
)
g
→
{\displaystyle {\vec {b}}\cdot ({\vec {a}}\otimes {\vec {g}}):=({\vec {a}}\cdot {\vec {b}}){\vec {g}}}
(
a
→
⊗
g
→
)
⋅
h
→
=
h
→
⋅
(
a
→
⊗
g
→
)
⊤
{\displaystyle ({\vec {a}}\otimes {\vec {g}})\cdot {\vec {h}}={\vec {h}}\cdot ({\vec {a}}\otimes {\vec {g}})^{\top }}
b
→
⋅
(
a
→
⊗
g
→
)
=
(
a
→
⊗
g
→
)
⊤
⋅
b
→
{\displaystyle {\vec {b}}\cdot ({\vec {a}}\otimes {\vec {g}})=({\vec {a}}\otimes {\vec {g}})^{\top }\cdot {\vec {b}}}
Allgemeine Tensoren:
A
i
j
(
e
^
i
⊗
e
^
j
)
⋅
v
→
=
A
i
j
(
v
→
⋅
e
^
j
)
e
^
i
{\displaystyle A_{ij}({\hat {e}}_{i}\otimes {\hat {e}}_{j})\cdot {\vec {v}}=A_{ij}({\vec {v}}\cdot {\hat {e}}_{j}){\hat {e}}_{i}}
A
i
j
(
a
→
i
⊗
g
→
j
)
⋅
v
→
=
A
i
j
(
v
→
⋅
g
→
j
)
a
→
i
{\displaystyle A^{ij}({\vec {a}}_{i}\otimes {\vec {g}}_{j})\cdot {\vec {v}}=A^{ij}({\vec {v}}\cdot {\vec {g}}_{j}){\vec {a}}_{i}}
v
→
⋅
A
i
j
(
e
^
i
⊗
e
^
j
)
=
A
i
j
(
v
→
⋅
e
^
i
)
e
^
j
{\displaystyle {\vec {v}}\cdot A_{ij}({\hat {e}}_{i}\otimes {\hat {e}}_{j})=A_{ij}({\vec {v}}\cdot {\hat {e}}_{i}){\hat {e}}_{j}}
v
→
⋅
A
i
j
(
a
→
i
⊗
g
→
j
)
=
A
i
j
(
v
→
⋅
a
^
i
)
g
→
j
{\displaystyle {\vec {v}}\cdot A^{ij}({\vec {a}}_{i}\otimes {\vec {g}}_{j})=A^{ij}({\vec {v}}\cdot {\hat {a}}_{i}){\vec {g}}_{j}}
Symbolisch:
A
⋅
v
→
=
v
→
⋅
A
⊤
{\displaystyle \mathbf {A} \cdot {\vec {v}}={\vec {v}}\cdot \mathbf {A} ^{\top }}
v
→
⋅
A
=
A
⊤
⋅
v
→
{\displaystyle {\vec {v}}\cdot \mathbf {A} =\mathbf {A} ^{\top }\cdot {\vec {v}}}
Abbildung
L
×
L
→
L
{\displaystyle {\mathcal {L}}\times {\mathcal {L}}\to {\mathcal {L}}}
(
a
→
⊗
g
→
)
⋅
(
h
→
⊗
u
→
)
:=
(
g
→
⋅
h
→
)
a
→
⊗
u
→
{\displaystyle ({\vec {a}}\otimes {\vec {g}})\cdot ({\vec {h}}\otimes {\vec {u}}):=({\vec {g}}\cdot {\vec {h}}){\vec {a}}\otimes {\vec {u}}}
(
a
→
⊗
g
→
)
⋅
A
=
a
→
⊗
(
g
→
⋅
A
)
=
a
→
⊗
g
→
⋅
A
=
a
→
⊗
(
A
⊤
⋅
g
→
)
{\displaystyle ({\vec {a}}\otimes {\vec {g}})\cdot \mathbf {A} ={\vec {a}}\otimes ({\vec {g}}\cdot \mathbf {A} )={\vec {a}}\otimes {\vec {g}}\cdot \mathbf {A} ={\vec {a}}\otimes (\mathbf {A} ^{\top }\cdot {\vec {g}})}
A
⋅
(
a
→
⊗
g
→
)
=
(
A
⋅
a
→
)
⊗
g
→
=
A
⋅
a
→
⊗
g
→
{\displaystyle \mathbf {A} \cdot ({\vec {a}}\otimes {\vec {g}})=(\mathbf {A} \cdot {\vec {a}})\otimes {\vec {g}}=\mathbf {A} \cdot {\vec {a}}\otimes {\vec {g}}}
(
A
i
k
e
^
i
⊗
e
^
k
)
⋅
(
B
l
j
e
^
l
⊗
e
^
j
)
=
A
i
k
B
k
j
e
^
i
⊗
e
^
j
{\displaystyle (A_{ik}{\hat {e}}_{i}\otimes {\hat {e}}_{k})\cdot (B_{lj}{\hat {e}}_{l}\otimes {\hat {e}}_{j})=A_{ik}B_{kj}{\hat {e}}_{i}\otimes {\hat {e}}_{j}}
(
A
i
j
a
→
i
⊗
g
→
j
)
⋅
(
B
k
l
h
→
k
⊗
u
→
l
)
=
A
i
j
(
g
→
j
⋅
h
→
k
)
B
k
l
a
→
i
⊗
u
→
l
{\displaystyle \left(A^{ij}{\vec {a}}_{i}\otimes {\vec {g}}_{j}\right)\cdot \left(B^{kl}{\vec {h}}_{k}\otimes {\vec {u}}_{l}\right)=A^{ij}({\vec {g}}_{j}\cdot {\vec {h}}_{k})B^{kl}{\vec {a}}_{i}\otimes {\vec {u}}_{l}}
Skalarprodukt von Tensoren
Bearbeiten
Abbildung
L
×
L
→
R
{\displaystyle {\mathcal {L}}\times {\mathcal {L}}\to \mathbb {R} }
Definition über die #Spur :
(
a
→
⊗
g
→
)
:
(
b
→
⊗
h
→
)
:=
S
p
(
(
a
→
⊗
g
→
)
⊤
⋅
(
b
→
⊗
h
→
)
)
=
(
a
→
⋅
b
→
)
(
g
→
⋅
h
→
)
{\displaystyle ({\vec {a}}\otimes {\vec {g}}):({\vec {b}}\otimes {\vec {h}}):=\mathrm {Sp} (({\vec {a}}\otimes {\vec {g}})^{\top }\cdot ({\vec {b}}\otimes {\vec {h}}))=({\vec {a}}\cdot {\vec {b}})({\vec {g}}\cdot {\vec {h}})}
A
:
B
:=
S
p
(
A
⊤
⋅
B
)
{\displaystyle \mathbf {A} :\mathbf {B} :=\mathrm {Sp} (\mathbf {A} ^{\top }\cdot \mathbf {B} )}
Eigenschaften:
A
:
B
=
B
:
A
=
A
⊤
:
B
⊤
=
B
⊤
:
A
⊤
{\displaystyle \mathbf {A} :\mathbf {B} =\mathbf {B} :\mathbf {A} =\mathbf {A} ^{\top }:\mathbf {B} ^{\top }=\mathbf {B} ^{\top }:\mathbf {A} ^{\top }}
A
⊤
:
B
=
A
:
B
⊤
{\displaystyle \mathbf {A} ^{\top }:\mathbf {B} =\mathbf {A} :\mathbf {B} ^{\top }}
A
:
(
B
⋅
C
)
=
(
B
⊤
⋅
A
)
:
C
=
(
A
⋅
C
⊤
)
:
B
{\displaystyle \mathbf {A} :(\mathbf {B\cdot C} )=(\mathbf {B} ^{\top }\cdot \mathbf {A} ):\mathbf {C} =(\mathbf {A\cdot C} ^{\top }):\mathbf {B} }
(
A
⋅
B
)
:
C
=
B
:
(
A
⊤
⋅
C
)
=
A
:
(
C
⋅
B
⊤
)
{\displaystyle (\mathbf {A\cdot B} ):\mathbf {C} =\mathbf {B} :(\mathbf {A} ^{\top }\cdot \mathbf {C} )=\mathbf {A} :(\mathbf {C\cdot B} ^{\top })}
(
u
→
⊗
v
→
)
:
A
=
u
→
⋅
A
⋅
v
→
{\displaystyle ({\vec {u}}\otimes {\vec {v}}):\mathbf {A} ={\vec {u}}\cdot \mathbf {A} \cdot {\vec {v}}}
Kreuzprodukt eines Vektors mit einem Tensor
Bearbeiten
Abbildung
V
×
L
→
L
{\displaystyle \mathbb {V} \times {\mathcal {L}}\to {\mathcal {L}}}
oder
L
×
V
→
L
{\displaystyle {\mathcal {L}}\times \mathbb {V} \to {\mathcal {L}}}
Dyaden:
a
→
×
(
b
→
⊗
g
→
)
=
(
a
→
×
b
→
)
⊗
g
→
=
a
→
×
b
→
⊗
g
→
{\displaystyle {\vec {a}}\times ({\vec {b}}\otimes {\vec {g}})=({\vec {a}}\times {\vec {b}})\otimes {\vec {g}}={\vec {a}}\times {\vec {b}}\otimes {\vec {g}}}
(
a
→
⊗
g
→
)
×
h
→
=
a
→
⊗
(
g
→
×
h
→
)
=
a
→
⊗
g
→
×
h
→
{\displaystyle ({\vec {a}}\otimes {\vec {g}})\times {\vec {h}}={\vec {a}}\otimes ({\vec {g}}\times {\vec {h}})={\vec {a}}\otimes {\vec {g}}\times {\vec {h}}}
a
→
×
b
→
⊗
g
→
=
−
[
(
b
→
⊗
g
→
)
⊤
×
a
→
]
⊤
{\displaystyle {\vec {a}}\times {\vec {b}}\otimes {\vec {g}}=-[({\vec {b}}\otimes {\vec {g}})^{\top }\times {\vec {a}}]^{\top }}
a
→
⊗
g
→
×
h
→
=
−
[
h
→
×
(
a
→
⊗
g
→
)
⊤
]
⊤
{\displaystyle {\vec {a}}\otimes {\vec {g}}\times {\vec {h}}=-[{\vec {h}}\times ({\vec {a}}\otimes {\vec {g}})^{\top }]^{\top }}
a
j
e
^
j
×
(
A
k
l
e
^
k
⊗
e
^
l
)
=
a
j
A
k
l
(
e
^
j
×
e
^
k
)
⊗
e
^
l
=
ϵ
i
j
k
a
j
A
k
l
e
^
i
⊗
e
^
l
{\displaystyle a_{j}{\hat {e}}_{j}\times (A_{kl}{\hat {e}}_{k}\otimes {\hat {e}}_{l})=a_{j}A_{kl}({\hat {e}}_{j}\times {\hat {e}}_{k})\otimes {\hat {e}}_{l}=\epsilon _{ijk}a_{j}A_{kl}{\hat {e}}_{i}\otimes {\hat {e}}_{l}}
(
A
i
j
e
^
i
⊗
e
^
j
)
×
a
k
e
^
k
=
A
i
j
a
k
e
^
i
⊗
(
e
^
j
×
e
^
k
)
=
ϵ
j
k
l
A
i
j
a
k
e
^
i
⊗
e
^
l
{\displaystyle (A_{ij}{\hat {e}}_{i}\otimes {\hat {e}}_{j})\times a_{k}{\hat {e}}_{k}=A_{ij}a_{k}{\hat {e}}_{i}\otimes ({\hat {e}}_{j}\times {\hat {e}}_{k})=\epsilon _{jkl}A_{ij}a_{k}{\hat {e}}_{i}\otimes {\hat {e}}_{l}}
Allgemeine Tensoren:
(
a
→
×
A
)
⋅
g
→
:=
a
→
×
(
A
⋅
g
→
)
=
a
→
×
(
g
→
⋅
A
⊤
)
{\displaystyle ({\vec {a}}\times \mathbf {A} )\cdot {\vec {g}}:={\vec {a}}\times (\mathbf {A} \cdot {\vec {g}})={\vec {a}}\times ({\vec {g}}\cdot \mathbf {A} ^{\top })}
b
→
⋅
(
a
→
×
A
)
:=
(
b
→
×
a
→
)
⋅
A
{\displaystyle {\vec {b}}\cdot ({\vec {a}}\times \mathbf {A} ):=({\vec {b}}\times {\vec {a}})\cdot \mathbf {A} }
g
→
⋅
(
A
×
a
→
)
:=
(
g
→
⋅
A
)
×
a
→
=
(
A
⊤
⋅
g
→
)
×
a
→
{\displaystyle {\vec {g}}\cdot (\mathbf {A} \times {\vec {a}}):=({\vec {g}}\cdot \mathbf {A} )\times {\vec {a}}=(\mathbf {A} ^{\top }\cdot {\vec {g}})\times {\vec {a}}}
(
A
×
a
→
)
⋅
b
→
=
A
⋅
(
a
→
×
b
→
)
{\displaystyle (\mathbf {A} \times {\vec {a}})\cdot {\vec {b}}=\mathbf {A} \cdot ({\vec {a}}\times {\vec {b}})}
a
→
×
A
=
−
(
A
⊤
×
a
→
)
⊤
{\displaystyle {\vec {a}}\times \mathbf {A} =-\left(\mathbf {A} ^{\top }\times {\vec {a}}\right)^{\top }}
A
×
a
→
=
−
(
a
→
×
A
⊤
)
⊤
{\displaystyle \mathbf {A} \times {\vec {a}}=-\left({\vec {a}}\times \mathbf {A} ^{\top }\right)^{\top }}
Symmetrische Tensoren:
a
→
×
A
S
=
−
(
A
S
×
a
→
)
⊤
{\displaystyle {\vec {a}}\times \mathbf {A} ^{\mathrm {S} }=-\left(\mathbf {A} ^{\mathrm {S} }\times {\vec {a}}\right)^{\top }}
Insbesondere Kugeltensoren:
a
→
×
A
K
=
A
K
×
a
→
=
−
(
a
→
×
A
K
)
⊤
{\displaystyle {\vec {a}}\times \mathbf {A} ^{\mathrm {K} }=\mathbf {A} ^{\mathrm {K} }\times {\vec {a}}=-({\vec {a}}\times \mathbf {A} ^{\mathrm {K} })^{\top }}
Schiefsymmetrische Tensoren:
a
→
×
A
A
=
(
A
A
×
a
→
)
⊤
{\displaystyle {\vec {a}}\times \mathbf {A} ^{\mathrm {A} }=\left(\mathbf {A} ^{\mathrm {A} }\times {\vec {a}}\right)^{\top }}
#Axialer Tensor oder Kreuzproduktmatrix mit dem #Einheitstensor :
(
a
→
×
1
)
⋅
g
→
=
a
→
⋅
(
g
→
×
1
)
=
a
→
⋅
(
1
×
g
→
)
=
a
→
×
g
→
{\displaystyle ({\vec {a}}\times \mathbf {1} )\cdot {\vec {g}}={\vec {a}}\cdot ({\vec {g}}\times \mathbf {1} )={\vec {a}}\cdot (\mathbf {1} \times {\vec {g}})={\vec {a}}\times {\vec {g}}}
Mehrfach:
(
a
→
×
(
b
→
×
A
)
)
⋅
g
→
=
a
→
×
(
b
→
×
(
A
⋅
g
→
)
)
=
(
a
→
⋅
A
⋅
g
→
)
b
→
−
(
a
→
⋅
b
→
)
A
⋅
g
→
{\displaystyle ({\vec {a}}\times ({\vec {b}}\times \mathbf {A} ))\cdot {\vec {g}}={\vec {a}}\times ({\vec {b}}\times (\mathbf {A} \cdot {\vec {g}}))=({\vec {a}}\cdot \mathbf {A} \cdot {\vec {g}}){\vec {b}}-({\vec {a}}\cdot {\vec {b}})\mathbf {A} \cdot {\vec {g}}}
a
→
×
(
b
→
×
A
)
=
b
→
⊗
a
→
⋅
A
−
(
a
→
⋅
b
→
)
A
{\displaystyle {\vec {a}}\times ({\vec {b}}\times \mathbf {A} )={\vec {b}}\otimes {\vec {a}}\cdot \mathbf {A} -({\vec {a}}\cdot {\vec {b}})\mathbf {A} }
Meistens ist aber:
(
A
⋅
a
→
)
×
g
→
≠
A
⋅
(
a
→
×
g
→
)
=
(
A
×
a
→
)
⋅
g
→
{\displaystyle (\mathbf {A} \cdot {\vec {a}})\times {\vec {g}}\neq \mathbf {A} \cdot ({\vec {a}}\times {\vec {g}})=(\mathbf {A} \times {\vec {a}})\cdot {\vec {g}}}
a
→
×
(
g
→
⋅
A
)
≠
(
a
→
×
g
→
)
⋅
A
=
a
→
⋅
(
g
→
×
A
)
{\displaystyle {\vec {a}}\times ({\vec {g}}\cdot \mathbf {A} )\neq ({\vec {a}}\times {\vec {g}})\cdot \mathbf {A} ={\vec {a}}\cdot ({\vec {g}}\times \mathbf {A} )}
Kreuzprodukt von Tensoren
Bearbeiten
Abbildung
L
×
L
→
V
{\displaystyle {\mathcal {L}}\times {\mathcal {L}}\to \mathbb {V} }
A
×
B
=
E
3
:
(
A
⋅
B
⊤
)
=
−
E
3
:
(
B
⋅
A
⊤
)
=
−
B
×
A
∈
V
{\displaystyle \mathbf {A\times B} ={\stackrel {3}{\mathbf {E} }}:(\mathbf {A\cdot B} ^{\top })=-{\stackrel {3}{\mathbf {E} }}:(\mathbf {B\cdot A} ^{\top })=-\mathbf {B\times A} \in \mathbb {V} }
mit #Fundamentaltensor 3. Stufe
E
3
{\displaystyle {\stackrel {3}{\mathbf {E} }}}
.
(
a
→
⊗
g
→
)
×
(
b
→
⊗
h
→
)
=
(
g
→
⋅
h
→
)
a
→
×
b
→
{\displaystyle ({\vec {a}}\otimes {\vec {g}})\times ({\vec {b}}\otimes {\vec {h}})=({\vec {g}}\cdot {\vec {h}}){\vec {a}}\times {\vec {b}}}
A
i
k
(
e
^
i
⊗
e
^
k
)
×
[
B
j
l
(
e
^
j
⊗
e
^
l
)
]
=
A
i
k
B
j
k
(
e
^
i
×
e
^
j
)
=
…
…
=
(
A
21
B
31
−
A
31
B
21
+
A
22
B
32
−
A
32
B
22
+
A
23
B
33
−
A
33
B
23
A
31
B
11
−
A
11
B
31
+
A
32
B
12
−
A
12
B
32
+
A
33
B
13
−
A
13
B
33
A
11
B
21
−
A
21
B
11
+
A
12
B
22
−
A
22
B
12
+
A
13
B
23
−
A
23
B
13
)
{\displaystyle {\begin{aligned}&A_{ik}({\hat {e}}_{i}\otimes {\hat {e}}_{k})\times [B_{jl}({\hat {e}}_{j}\otimes {\hat {e}}_{l})]=A_{ik}B_{jk}({\hat {e}}_{i}\times {\hat {e}}_{j})=\ldots \\&\ldots ={\begin{pmatrix}A_{21}B_{31}-A_{31}B_{21}+A_{22}B_{32}-A_{32}B_{22}+A_{23}B_{33}-A_{33}B_{23}\\A_{31}B_{11}-A_{11}B_{31}+A_{32}B_{12}-A_{12}B_{32}+A_{33}B_{13}-A_{13}B_{33}\\A_{11}B_{21}-A_{21}B_{11}+A_{12}B_{22}-A_{22}B_{12}+A_{13}B_{23}-A_{23}B_{13}\end{pmatrix}}\end{aligned}}}
Zusammenhang mit #Dualer axialer Vektor und #Vektorinvariante :
A
×
B
=
−
2
A
⋅
B
⊤
→
A
=
i
→
(
A
⋅
B
⊤
)
{\displaystyle \mathbf {A\times B} =-2{\stackrel {A}{\overrightarrow {\mathbf {A\cdot B} ^{\top }}}}={\vec {\mathrm {i} }}(\mathbf {A\cdot B} ^{\top })}
Mit #Einheitstensor :
1
×
A
=
2
A
→
A
=
−
i
→
(
A
)
{\displaystyle \mathbf {1\times A} =2{\stackrel {A}{\overrightarrow {\mathbf {A} }}}=-{\vec {\mathrm {i} }}(\mathbf {A} )}
Mehrfachprodukte:
(
A
⋅
B
)
×
C
=
A
×
(
C
⋅
B
⊤
)
{\displaystyle (\mathbf {A\cdot B} )\times \mathbf {C} =\mathbf {A} \times (\mathbf {C\cdot B} ^{\top })}
A
×
(
B
⋅
C
)
=
(
A
⋅
C
⊤
)
×
B
{\displaystyle \mathbf {A} \times (\mathbf {B\cdot C} )=(\mathbf {A\cdot C} ^{\top })\times \mathbf {B} }
Zusammenhang mit dem #Skalarkreuzprodukt von Tensoren :
A
×
B
=
A
⋅
×
(
B
⊤
)
{\displaystyle \mathbf {A\times B} =\mathbf {A} \cdot \!\!\times (\mathbf {B} ^{\top })}
Skalarkreuzprodukt von Tensoren
Bearbeiten
Abbildung
L
×
L
→
V
{\displaystyle {\mathcal {L}}\times {\mathcal {L}}\to \mathbb {V} }
(
a
→
⊗
g
→
)
⋅
×
(
h
→
⊗
u
→
)
=
−
(
u
→
⊗
h
→
)
⋅
×
(
g
→
⊗
a
→
)
:=
(
g
→
⋅
h
→
)
a
→
×
u
→
{\displaystyle ({\vec {a}}\otimes {\vec {g}})\cdot \!\!\times ({\vec {h}}\otimes {\vec {u}})=-({\vec {u}}\otimes {\vec {h}})\cdot \!\!\times ({\vec {g}}\otimes {\vec {a}}):=({\vec {g}}\cdot {\vec {h}}){\vec {a}}\times {\vec {u}}}
A
i
k
(
e
^
i
⊗
e
^
k
)
⋅
×
[
B
l
j
(
e
^
l
⊗
e
^
j
)
]
=
A
i
k
B
k
j
(
e
^
i
×
e
^
j
)
=
…
…
=
(
A
21
B
13
−
A
31
B
12
+
A
22
B
23
−
A
32
B
22
+
A
23
B
33
−
A
33
B
32
A
31
B
11
−
A
11
B
13
+
A
32
B
21
−
A
12
B
23
+
A
33
B
31
−
A
13
B
33
A
11
B
12
−
A
21
B
11
+
A
12
B
22
−
A
22
B
21
+
A
13
B
32
−
A
23
B
31
)
{\displaystyle {\begin{aligned}&A_{ik}({\hat {e}}_{i}\otimes {\hat {e}}_{k})\cdot \!\!\times [B_{lj}({\hat {e}}_{l}\otimes {\hat {e}}_{j})]=A_{ik}B_{kj}({\hat {e}}_{i}\times {\hat {e}}_{j})=\ldots \\&\ldots ={\begin{pmatrix}A_{21}B_{13}-A_{31}B_{12}+A_{22}B_{23}-A_{32}B_{22}+A_{23}B_{33}-A_{33}B_{32}\\A_{31}B_{11}-A_{11}B_{13}+A_{32}B_{21}-A_{12}B_{23}+A_{33}B_{31}-A_{13}B_{33}\\A_{11}B_{12}-A_{21}B_{11}+A_{12}B_{22}-A_{22}B_{21}+A_{13}B_{32}-A_{23}B_{31}\end{pmatrix}}\end{aligned}}}
Das Skalarkreuzprodukt mit dem #Einheitstensor vertauscht das dyadische Produkt durch das Kreuzprodukt:
1
⋅
×
(
a
→
⊗
b
→
)
=
a
→
×
b
→
{\displaystyle \mathbf {1} \cdot \!\!\times ({\vec {a}}\otimes {\vec {b}})={\vec {a}}\times {\vec {b}}}
Allgemein:
A
⋅
×
B
=
−
(
B
⊤
)
⋅
×
(
A
⊤
)
{\displaystyle \mathbf {A} \cdot \!\!\times \mathbf {B} =-(\mathbf {B} ^{\top })\cdot \!\!\times (\mathbf {A} ^{\top })}
A
⋅
×
(
B
⋅
C
)
=
(
A
⋅
B
)
⋅
×
C
{\displaystyle \mathbf {A} \cdot \!\!\times (\mathbf {B\cdot C} )=(\mathbf {A\cdot B} )\cdot \!\!\times \mathbf {C} }
(
A
⋅
B
)
⋅
×
C
=
A
⋅
×
(
B
⋅
C
)
{\displaystyle (\mathbf {A\cdot B} )\cdot \!\!\times \mathbf {C} =\mathbf {A} \cdot \!\!\times (\mathbf {B\cdot C} )}
Zusammenhang mit dem #Kreuzprodukt von Tensoren :
S
⋅
×
T
=
S
×
(
T
⊤
)
{\displaystyle \mathbf {S} \cdot \!\!\times \mathbf {T} =\mathbf {S\times (T^{\top })} }
Zusammenhang mit #Vektorinvariante und #Dualer axialer Vektor :
A
⋅
×
B
=
i
→
(
A
⋅
B
)
=
−
2
A
⋅
B
→
A
{\displaystyle \mathbf {A} \cdot \!\!\times \mathbf {B} ={\vec {\mathrm {i} }}(\mathbf {A} \cdot \mathbf {B} )=-2{\stackrel {A}{\overrightarrow {\mathbf {A} \cdot \mathbf {B} }}}}
Doppeltes Kreuzprodukt von Tensoren
Bearbeiten
Siehe auch #Äußeres Tensorprodukt #
Abbildung
L
×
L
→
L
{\displaystyle {\mathcal {L}}\times {\mathcal {L}}\to {\mathcal {L}}}
(
a
→
⊗
g
→
)
×
×
(
h
→
⊗
b
→
)
:=
(
g
→
×
h
→
)
⊗
(
a
→
×
b
→
)
=
(
g
→
⊗
a
→
)
#
(
h
→
⊗
b
→
)
{\displaystyle ({\vec {a}}\otimes {\vec {g}})\times \!\!\times ({\vec {h}}\otimes {\vec {b}}):=({\vec {g}}\times {\vec {h}})\otimes ({\vec {a}}\times {\vec {b}})=({\vec {g}}\otimes {\vec {a}})\#({\vec {h}}\otimes {\vec {b}})}
A
i
j
(
e
^
i
⊗
e
^
j
)
×
×
[
B
k
l
(
e
^
k
⊗
e
^
l
)
]
:=
A
i
j
B
k
l
(
e
^
j
×
e
^
k
)
⊗
(
e
^
i
×
e
^
l
)
{\displaystyle A_{ij}({\hat {e}}_{i}\otimes {\hat {e}}_{j})\times \!\!\times [B_{kl}({\hat {e}}_{k}\otimes {\hat {e}}_{l})]:=A_{ij}B_{kl}({\hat {e}}_{j}\times {\hat {e}}_{k})\otimes ({\hat {e}}_{i}\times {\hat {e}}_{l})}
A
×
×
B
=
A
⊤
#
B
{\displaystyle \mathbf {A} \times \!\!\times \mathbf {B} =\mathbf {A} ^{\top }\#\mathbf {B} }
Äußeres Tensorprodukt
Bearbeiten
Abbildung
L
×
L
→
L
{\displaystyle {\mathcal {L}}\times {\mathcal {L}}\to {\mathcal {L}}}
(
a
→
⊗
g
→
)
#
(
b
→
⊗
h
→
)
:=
(
a
→
×
b
→
)
⊗
(
g
→
×
h
→
)
=
(
g
→
⊗
a
→
)
×
×
(
b
→
⊗
h
→
)
{\displaystyle ({\vec {a}}\otimes {\vec {g}})\#({\vec {b}}\otimes {\vec {h}}):=({\vec {a}}\times {\vec {b}})\otimes ({\vec {g}}\times {\vec {h}})=({\vec {g}}\otimes {\vec {a}})\times \!\!\times ({\vec {b}}\otimes {\vec {h}})}
(
A
i
j
e
^
i
⊗
e
^
j
)
#
(
B
k
l
e
^
k
⊗
e
^
l
)
=
A
i
j
B
k
l
(
e
^
i
×
e
^
k
)
⊗
(
e
^
j
×
e
^
l
)
=
ϵ
i
k
m
ϵ
j
l
n
A
i
j
B
k
l
e
^
m
⊗
e
^
n
{\displaystyle {\begin{aligned}&(A_{ij}{\hat {e}}_{i}\otimes {\hat {e}}_{j})\#(B_{kl}{\hat {e}}_{k}\otimes {\hat {e}}_{l})=A_{ij}B_{kl}({\hat {e}}_{i}\times {\hat {e}}_{k})\otimes ({\hat {e}}_{j}\times {\hat {e}}_{l})\\&\qquad \qquad \qquad \qquad \qquad \quad \;\;\;=\epsilon _{ikm}\epsilon _{jln}A_{ij}B_{kl}{\hat {e}}_{m}\otimes {\hat {e}}_{n}\end{aligned}}}
Mit der Formel für das Produkt zweier #Permutationssymbole :
A
#
B
=
[
S
p
(
A
)
S
p
(
B
)
−
S
p
(
A
⋅
B
)
]
1
+
[
A
⋅
B
+
B
⋅
A
−
S
p
(
A
)
B
−
S
p
(
B
)
A
]
⊤
{\displaystyle {\begin{aligned}\mathbf {A} \#\mathbf {B} =&[\mathrm {Sp} (\mathbf {A} )\mathrm {Sp} (\mathbf {B} )-\mathrm {Sp} (\mathbf {A\cdot B} )]\mathbf {1} \\&+[\mathbf {A\cdot B} +\mathbf {B\cdot A} -\mathrm {Sp} (\mathbf {A} )\mathbf {B} -\mathrm {Sp} (\mathbf {B} )\mathbf {A} ]^{\top }\end{aligned}}}
Grundlegende Eigenschaften:
A
#
B
=
B
#
A
=
(
A
⊤
#
B
⊤
)
⊤
{\displaystyle \mathbf {A} \#\mathbf {B} =\mathbf {B} \#\mathbf {A} =(\mathbf {A} ^{\top }\#\mathbf {B} ^{\top })^{\top }}
(
A
+
B
)
#
C
=
A
#
C
+
B
#
C
{\displaystyle (\mathbf {A+B} )\#\mathbf {C} =\mathbf {A} \#\mathbf {C} +\mathbf {B} \#\mathbf {C} }
A
#
(
B
+
C
)
=
A
#
B
+
A
#
C
{\displaystyle \mathbf {A} \#(\mathbf {B+C} )=\mathbf {A} \#\mathbf {B} +\mathbf {A} \#\mathbf {C} }
Kreuzprodukt und #Kofaktor :
(
A
#
B
)
⋅
(
u
→
×
v
→
)
=
(
A
⋅
u
→
)
×
(
B
⋅
v
→
)
−
(
A
⋅
v
→
)
×
(
B
⋅
u
→
)
{\displaystyle (\mathbf {A} \#\mathbf {B} )\cdot ({\vec {u}}\times {\vec {v}})=(\mathbf {A} \cdot {\vec {u}})\times (\mathbf {B} \cdot {\vec {v}})-(\mathbf {A} \cdot {\vec {v}})\times (\mathbf {B} \cdot {\vec {u}})}
1
2
(
A
#
A
)
⋅
(
u
→
×
v
→
)
=
c
o
f
(
A
)
⋅
(
u
→
×
v
→
)
=
(
A
⋅
u
→
)
×
(
A
⋅
v
→
)
{\displaystyle {\frac {1}{2}}(\mathbf {A} \#\mathbf {A} )\cdot ({\vec {u}}\times {\vec {v}})=\mathrm {cof} (\mathbf {A} )\cdot ({\vec {u}}\times {\vec {v}})=(\mathbf {A} \cdot {\vec {u}})\times (\mathbf {A} \cdot {\vec {v}})}
#Hauptinvarianten :
1
2
(
A
#
1
)
:
1
=
S
p
(
A
)
{\displaystyle {\frac {1}{2}}(\mathbf {A\#1} ):\mathbf {1} =\mathrm {Sp} (\mathbf {A} )}
1
2
(
A
#
A
)
:
1
=
I
2
(
A
)
{\displaystyle {\frac {1}{2}}(\mathbf {A\#A} ):\mathbf {1} =\mathrm {I} _{2}(\mathbf {A} )}
1
6
(
A
#
A
)
:
A
=
det
(
A
)
{\displaystyle {\frac {1}{6}}(\mathbf {A\#A} ):\mathbf {A} =\det(\mathbf {A} )}
Weitere Eigenschaften:
1
#
1
=
2
1
{\displaystyle \mathbf {1} \#\mathbf {1} =2\,\mathbf {1} }
A
#
1
=
S
p
(
A
)
1
−
A
⊤
{\displaystyle \mathbf {A} \#\mathbf {1} =\mathrm {Sp} (\mathbf {A} )\mathbf {1} -\mathbf {A} ^{\top }}
(
A
#
B
)
:
C
=
(
B
#
C
)
:
A
=
(
C
#
A
)
:
B
{\displaystyle (\mathbf {A} \#\mathbf {B} ):\mathbf {C} =(\mathbf {B} \#\mathbf {C} ):\mathbf {A} =(\mathbf {C} \#\mathbf {A} ):\mathbf {B} }
S
p
(
A
#
B
)
=
S
p
(
A
)
S
p
(
B
)
−
S
p
(
A
⋅
B
)
{\displaystyle \mathrm {Sp} (\mathbf {A} \#\mathbf {B} )=\mathrm {Sp} (\mathbf {A} )\mathrm {Sp} (\mathbf {B} )-\mathrm {Sp} (\mathbf {A\cdot B} )}
(
A
#
B
)
⋅
(
C
#
D
)
=
(
A
⋅
C
)
#
(
B
⋅
D
)
+
(
A
⋅
D
)
#
(
B
⋅
C
)
{\displaystyle (\mathbf {A} \#\mathbf {B} )\cdot (\mathbf {C} \#\mathbf {D} )=(\mathbf {A\cdot C} )\#(\mathbf {B\cdot D} )+(\mathbf {A\cdot D} )\#(\mathbf {B\cdot C} )}
Aber meistens:
(
A
#
B
)
#
C
≠
A
#
(
B
#
C
)
{\displaystyle (\mathbf {A} \#\mathbf {B} )\#\mathbf {C} \neq \mathbf {A} \#(\mathbf {B} \#\mathbf {C} )}
.
Produkte von Tensoren, Dyaden und Vektoren
Bearbeiten
A
⋅
(
a
→
⊗
g
→
)
=
(
A
⋅
a
→
)
⊗
g
→
{\displaystyle \mathbf {A} \cdot ({\vec {a}}\otimes {\vec {g}})=(\mathbf {A} \cdot {\vec {a}})\otimes {\vec {g}}}
a
→
⊗
(
A
⋅
g
→
)
=
(
a
→
⊗
g
→
)
⋅
A
⊤
{\displaystyle {\vec {a}}\otimes (\mathbf {A} \cdot {\vec {g}})=({\vec {a}}\otimes {\vec {g}})\cdot \mathbf {A} ^{\top }}
a
→
⋅
A
⋅
g
→
=
A
:
(
a
→
⊗
g
→
)
{\displaystyle {\vec {a}}\cdot \mathbf {A} \cdot {\vec {g}}=\mathbf {A} :({\vec {a}}\otimes {\vec {g}})}
Spatprodukt und #Determinante eines Tensors:
(
A
⋅
a
→
)
⋅
[
(
A
⋅
b
→
)
×
(
A
⋅
c
→
)
]
=
d
e
t
(
A
)
a
→
⋅
(
b
→
×
c
→
)
{\displaystyle (\mathbf {A} \cdot {\vec {a}})\cdot [(\mathbf {A} \cdot {\vec {b}})\times (\mathbf {A} \cdot {\vec {c}})]=\mathrm {det} (\mathbf {A} )\;{\vec {a}}\cdot ({\vec {b}}\times {\vec {c}})}
Kreuzprodukt und #Kofaktor :
(
A
⋅
a
→
)
×
(
A
⋅
b
→
)
=
c
o
f
(
A
)
⋅
(
a
→
×
b
→
)
{\displaystyle (\mathbf {A} \cdot {\vec {a}})\times (\mathbf {A} \cdot {\vec {b}})=\mathrm {cof} (\mathbf {A} )\cdot ({\vec {a}}\times {\vec {b}})}
A
⊤
⋅
[
(
A
⋅
a
→
)
×
(
A
⋅
b
→
)
]
=
d
e
t
(
A
)
a
→
×
b
→
{\displaystyle \mathbf {A} ^{\top }\cdot [(\mathbf {A} \cdot {\vec {a}})\times (\mathbf {A} \cdot {\vec {b}})]=\mathrm {det} (\mathbf {A} )\;{\vec {a}}\times {\vec {b}}}
#Axialer Tensor oder Kreuzproduktmatrix , #Kreuzprodukt von Tensoren , #Skalarkreuzprodukt von Tensoren , #Dualer axialer Vektor und #Vektorinvariante :
(
u
→
×
1
)
⋅
v
→
=
(
u
→
⊗
v
→
)
×
1
=
(
u
→
⊗
v
→
)
⋅
×
1
=
(
u
→
×
v
→
)
×
1
→
A
=
i
→
(
u
→
⊗
v
→
)
=
u
→
×
v
→
{\displaystyle ({\vec {u}}\times \mathbf {1} )\cdot {\vec {v}}=({\vec {u}}\otimes {\vec {v}})\times \mathbf {1} =({\vec {u}}\otimes {\vec {v}})\cdot \!\!\times \mathbf {1} ={\stackrel {A}{\overrightarrow {({\vec {u}}\times {\vec {v}})\times \mathbf {1} }}}={\vec {\mathrm {i} }}({\vec {u}}\otimes {\vec {v}})={\vec {u}}\times {\vec {v}}}
A
=
A
i
j
e
^
i
⊗
e
^
j
=
(
A
11
A
12
A
13
A
21
A
22
A
23
A
31
A
32
A
33
)
→
A
i
j
=
e
^
i
⋅
A
⋅
e
^
j
{\displaystyle \mathbf {A} =A_{ij}\,{\hat {e}}_{i}\otimes {\hat {e}}_{j}={\begin{pmatrix}A_{11}&A_{12}&A_{13}\\A_{21}&A_{22}&A_{23}\\A_{31}&A_{32}&A_{33}\end{pmatrix}}\quad \rightarrow \;A_{ij}={\hat {e}}_{i}\cdot \mathbf {A} \cdot {\hat {e}}_{j}}
A
=
A
i
j
a
→
i
⊗
g
→
j
→
A
i
j
=
a
→
i
⋅
A
⋅
g
→
j
=
(
a
→
i
⊗
g
→
j
)
:
A
{\displaystyle \mathbf {A} =A^{ij}\,{\vec {a}}_{i}\otimes {\vec {g}}_{j}\quad \rightarrow \;A^{ij}={\vec {a}}^{i}\cdot \mathbf {A} \cdot {\vec {g}}^{j}=({\vec {a}}^{i}\otimes {\vec {g}}^{j}):\mathbf {A} }
A
=
A
i
j
a
→
i
⊗
g
→
j
→
A
i
j
=
a
→
i
⋅
A
⋅
g
→
j
{\displaystyle \mathbf {A} =A_{ij}\,{\vec {a}}^{i}\otimes {\vec {g}}^{j}\quad \rightarrow \;A_{ij}={\vec {a}}_{i}\cdot \mathbf {A} \cdot {\vec {g}}_{j}}
A
=
A
j
i
a
→
i
⊗
g
→
j
→
A
j
i
=
a
→
i
⋅
A
⋅
g
→
j
{\displaystyle \mathbf {A} =A_{j}^{i}\,{\vec {a}}_{i}\otimes {\vec {g}}^{j}\quad \rightarrow \;A_{j}^{i}={\vec {a}}^{i}\cdot \mathbf {A} \cdot {\vec {g}}_{j}}
A
=
A
i
j
a
→
i
⊗
g
→
j
→
A
i
j
=
a
→
i
⋅
A
⋅
g
→
j
{\displaystyle \mathbf {A} =A_{i}^{j}\,{\vec {a}}^{i}\otimes {\vec {g}}_{j}\quad \rightarrow \;A_{i}^{j}={\vec {a}}_{i}\cdot \mathbf {A} \cdot {\vec {g}}^{j}}
A
=
A
i
j
a
→
i
⊗
a
→
j
=
A
i
j
∗
b
→
i
⊗
b
→
j
{\displaystyle \mathbf {A} =A_{ij}{\vec {a}}^{i}\otimes {\vec {a}}^{j}=A_{ij}^{\ast }{\vec {b}}^{i}\otimes {\vec {b}}^{j}}
Die Komponenten
A
i
j
∗
{\displaystyle A_{ij}^{\ast }}
ergeben sich durch Vor- und Nachmultiplikation mit dem #Einheitstensor
1
=
b
→
i
⊗
b
→
i
{\displaystyle \mathbf {1} ={\vec {b}}^{i}\otimes {\vec {b}}_{i}}
:
A
=
1
⋅
A
⋅
1
⊤
=
(
b
→
i
⊗
b
→
i
)
⋅
(
A
k
l
a
→
k
⊗
a
→
l
)
⋅
(
b
→
j
⊗
b
→
j
)
=
(
b
→
i
⋅
a
→
k
)
A
k
l
(
a
→
l
⋅
b
→
j
)
b
→
i
⊗
b
→
j
=:
A
i
j
∗
b
→
i
⊗
b
→
j
→
A
i
j
∗
=
(
b
→
i
⋅
a
→
k
)
A
k
l
(
a
→
l
⋅
b
→
j
)
{\displaystyle {\begin{aligned}\mathbf {A} =\mathbf {1\cdot A\cdot 1} ^{\top }=&({\vec {b}}^{i}\otimes {\vec {b}}_{i})\cdot (A_{kl}{\vec {a}}^{k}\otimes {\vec {a}}^{l})\cdot ({\vec {b}}_{j}\otimes {\vec {b}}^{j})\\=&({\vec {b}}_{i}\cdot {\vec {a}}^{k})A_{kl}({\vec {a}}^{l}\cdot {\vec {b}}_{j}){\vec {b}}^{i}\otimes {\vec {b}}^{j}=:A_{ij}^{\ast }{\vec {b}}^{i}\otimes {\vec {b}}^{j}\\\rightarrow A_{ij}^{\ast }=&({\vec {b}}_{i}\cdot {\vec {a}}^{k})A_{kl}({\vec {a}}^{l}\cdot {\vec {b}}_{j})\end{aligned}}}
Allgemein:
A
=
A
i
j
a
→
i
⊗
g
→
j
=
A
i
j
∗
b
→
i
⊗
h
→
j
{\displaystyle \mathbf {A} =A_{ij}{\vec {a}}^{i}\otimes {\vec {g}}^{j}=A_{ij}^{\ast }{\vec {b}}^{i}\otimes {\vec {h}}^{j}}
Basiswechsel mit
1
=
(
b
→
i
⋅
a
→
k
)
b
→
i
⊗
a
→
k
=
(
h
→
j
⋅
g
→
l
)
h
→
j
⊗
g
→
l
{\displaystyle \mathbf {1} =({\vec {b}}_{i}\cdot {\vec {a}}^{k}){\vec {b}}^{i}\otimes {\vec {a}}_{k}=({\vec {h}}_{j}\cdot {\vec {g}}^{l}){\vec {h}}^{j}\otimes {\vec {g}}_{l}}
:
A
=
1
⋅
A
⋅
1
⊤
=
(
b
→
i
⋅
a
→
k
)
(
b
→
i
⊗
a
→
k
)
⋅
A
m
n
(
a
→
m
⊗
g
→
n
)
⋅
(
h
→
j
⋅
g
→
l
)
(
g
→
l
⊗
h
→
j
)
=
(
b
→
i
⋅
a
→
k
)
A
k
l
(
h
→
j
⋅
g
→
l
)
(
b
→
i
⊗
h
→
j
)
=
A
i
j
∗
b
→
i
⊗
h
→
j
→
A
i
j
∗
=
(
b
→
i
⋅
a
→
k
)
A
k
l
(
g
→
l
⋅
h
→
j
)
{\displaystyle {\begin{aligned}\mathbf {A} =\mathbf {1\cdot A\cdot 1} ^{\top }=&({\vec {b}}_{i}\cdot {\vec {a}}^{k})({\vec {b}}^{i}\otimes {\vec {a}}_{k})\cdot A_{mn}({\vec {a}}^{m}\otimes {\vec {g}}^{n})\cdot ({\vec {h}}_{j}\cdot {\vec {g}}^{l})({\vec {g}}_{l}\otimes {\vec {h}}^{j})\\=&({\vec {b}}_{i}\cdot {\vec {a}}^{k})A_{kl}({\vec {h}}_{j}\cdot {\vec {g}}^{l})({\vec {b}}^{i}\otimes {\vec {h}}^{j})=A_{ij}^{\ast }{\vec {b}}^{i}\otimes {\vec {h}}^{j}\\\rightarrow A_{ij}^{\ast }=&({\vec {b}}_{i}\cdot {\vec {a}}^{k})A_{kl}({\vec {g}}^{l}\cdot {\vec {h}}_{j})\end{aligned}}}
Bilinearform und Identität von Tensoren
Bearbeiten
Definition für einen Tensor A :
⟨
u
→
,
v
→
⟩
:=
u
→
⋅
A
⋅
v
→
=
A
:
(
u
→
⊗
v
→
)
{\displaystyle \langle {\vec {u}},{\vec {v}}\rangle :={\vec {u}}\cdot \mathbf {A} \cdot {\vec {v}}=\mathbf {A} :({\vec {u}}\otimes {\vec {v}})}
Zwei Tensoren A und B sind identisch, wenn
u
→
⋅
A
⋅
v
→
=
u
→
⋅
B
⋅
v
→
∀
u
→
,
v
→
∈
V
{\displaystyle {\vec {u}}\cdot \mathbf {A} \cdot {\vec {v}}={\vec {u}}\cdot \mathbf {B} \cdot {\vec {v}}\quad \forall \;{\vec {u}},{\vec {v}}\in \mathbb {V} }
Definition
c
o
f
(
A
)
:=
A
⊤
⋅
A
⊤
−
I
1
(
A
)
A
⊤
+
I
2
(
A
)
1
{\displaystyle \mathrm {cof} (\mathbf {A} ):=\mathbf {A^{\top }\cdot A^{\top }} -\mathrm {I} _{1}(\mathbf {A} )\mathbf {A} ^{\top }+\mathrm {I} _{2}(\mathbf {A} )\mathbf {1} }
#Invarianten :
Wenn λ1,2,3 die #Eigenwerte des Tensors A sind, dann hat cof(A ) die Eigenwerte λ1 λ2 , λ2 λ3 , λ3 λ1 .
#Hauptinvarianten :
I
1
(
c
o
f
(
A
)
)
=
I
2
(
A
)
{\displaystyle \mathrm {I} _{1}(\mathrm {cof} (\mathbf {A} ))=\mathrm {I} _{2}(\mathbf {A} )}
I
2
(
c
o
f
(
A
)
)
=
I
1
(
A
)
d
e
t
(
A
)
{\displaystyle \mathrm {I} _{2}(\mathrm {cof} (\mathbf {A} ))=\mathrm {I} _{1}(\mathbf {A} )\mathrm {det} (\mathbf {A} )}
d
e
t
(
c
o
f
(
A
)
)
=
d
e
t
2
(
A
)
{\displaystyle \mathrm {det} (\mathrm {cof} (\mathbf {A} ))=\mathrm {det} ^{2}(\mathbf {A} )}
#Betrag :
‖
c
o
f
(
A
)
‖
=
I
2
(
A
⊤
⋅
A
)
=
2
2
‖
A
‖
4
−
‖
A
⊤
⋅
A
‖
2
{\displaystyle \|\mathrm {cof} (\mathbf {A} )\|={\sqrt {\mathrm {I} _{2}(\mathbf {A^{\top }\cdot A} )}}={\frac {\sqrt {2}}{2}}{\sqrt {\|\mathbf {A} \|^{4}-\|\mathbf {A^{\top }\cdot A} \|^{2}}}}
Weitere Eigenschaften:
c
o
f
(
x
A
)
=
x
2
c
o
f
(
A
)
{\displaystyle \mathrm {cof} (x\mathbf {A} )=x^{2}\mathrm {cof} (\mathbf {A} )}
d
e
t
(
A
)
≠
0
→
c
o
f
(
A
)
=
det
(
A
)
A
⊤
−
1
{\displaystyle \mathrm {det} (\mathbf {A} )\neq 0\quad \rightarrow \quad \mathrm {cof} (\mathbf {A} )=\det(\mathbf {A} )\mathbf {A} ^{\top -1}}
A
⊤
⋅
c
o
f
(
A
)
=
c
o
f
(
A
)
⋅
A
⊤
=
d
e
t
(
A
)
1
{\displaystyle \mathbf {A} ^{\top }\cdot \mathrm {cof} (\mathbf {A} )=\mathrm {cof} (\mathbf {A} )\cdot \mathbf {A} ^{\top }=\mathrm {det} (\mathbf {A} )\mathbf {1} }
c
o
f
(
A
⋅
B
)
=
c
o
f
(
A
)
⋅
c
o
f
(
B
)
{\displaystyle \mathrm {cof} (\mathbf {A\cdot B} )=\mathrm {cof} (\mathbf {A} )\cdot \mathrm {cof} (\mathbf {B} )}
c
o
f
(
A
⊤
)
=
c
o
f
(
A
)
⊤
{\displaystyle \mathrm {cof} (\mathbf {A} ^{\top })=\mathrm {cof} (\mathbf {A} )^{\top }}
c
o
f
(
c
o
f
(
A
)
)
=
d
e
t
(
A
)
A
{\displaystyle \mathrm {cof} \left(\mathrm {cof} (\mathbf {A} )\right)=\mathrm {det} (\mathbf {A} )\mathbf {A} }
c
o
f
(
A
i
j
e
^
i
⊗
e
^
j
)
=
1
2
(
A
k
l
A
m
n
ϵ
k
m
i
ϵ
l
n
j
)
(
e
^
i
⊗
e
^
j
)
=
…
…
=
(
A
22
A
33
−
A
23
A
32
A
23
A
31
−
A
21
A
33
A
21
A
32
−
A
22
A
31
A
32
A
13
−
A
33
A
12
A
33
A
11
−
A
31
A
13
A
31
A
12
−
A
32
A
11
A
12
A
23
−
A
13
A
22
A
13
A
21
−
A
11
A
23
A
11
A
22
−
A
12
A
21
)
{\displaystyle {\begin{aligned}&\mathrm {cof} (A_{ij}{\hat {e}}_{i}\otimes {\hat {e}}_{j})={\frac {1}{2}}(A_{kl}A_{mn}\epsilon _{kmi}\epsilon _{lnj})({\hat {e}}_{i}\otimes {\hat {e}}_{j})=\ldots \\&\ldots ={\begin{pmatrix}A_{22}A_{33}-A_{23}A_{32}&A_{23}A_{31}-A_{21}A_{33}&A_{21}A_{32}-A_{22}A_{31}\\A_{32}A_{13}-A_{33}A_{12}&A_{33}A_{11}-A_{31}A_{13}&A_{31}A_{12}-A_{32}A_{11}\\A_{12}A_{23}-A_{13}A_{22}&A_{13}A_{21}-A_{11}A_{23}&A_{11}A_{22}-A_{12}A_{21}\end{pmatrix}}\end{aligned}}}
Kofaktor und #Äußeres Tensorprodukt :
c
o
f
(
A
)
=
1
2
A
#
A
{\displaystyle \mathrm {cof} (\mathbf {A} )={\frac {1}{2}}\mathbf {A} \#\mathbf {A} }
c
o
f
(
A
+
B
)
=
1
2
(
A
#
A
+
2
A
#
B
+
B
#
B
)
=
c
o
f
(
A
)
+
c
o
f
(
B
)
+
A
#
B
{\displaystyle {\begin{aligned}\mathrm {cof} (\mathbf {A+B} )=&{\frac {1}{2}}(\mathbf {A} \#\mathbf {A} +2\mathbf {A} \#\mathbf {B} +\mathbf {B} \#\mathbf {B} )\\=&\mathrm {cof} (\mathbf {A} )+\mathrm {cof} (\mathbf {B} )+\mathbf {A} \#\mathbf {B} \end{aligned}}}
Kreuzprodukt und Kofaktor:
(
A
⋅
a
→
)
×
(
A
⋅
b
→
)
=
c
o
f
(
A
)
⋅
(
a
→
×
b
→
)
{\displaystyle (\mathbf {A} \cdot {\vec {a}})\times (\mathbf {A} \cdot {\vec {b}})=\mathrm {cof} (\mathbf {A} )\cdot ({\vec {a}}\times {\vec {b}})}
Definition:
a
d
j
(
A
)
:=
A
2
−
I
1
(
A
)
A
+
I
2
(
A
)
1
=
c
o
f
(
A
)
⊤
{\displaystyle \mathrm {adj} (\mathbf {A} ):=\mathbf {A} ^{2}-\mathrm {I} _{1}(\mathbf {A} )\mathbf {A} +\mathrm {I} _{2}(\mathbf {A} )\mathbf {1} =\mathrm {cof} (\mathbf {A} )^{\top }}
#Hauptinvarianten :
I
1
(
a
d
j
(
A
)
)
=
I
2
(
A
)
{\displaystyle \mathrm {I} _{1}(\mathrm {adj} (\mathbf {A} ))=\mathrm {I} _{2}(\mathbf {A} )}
I
2
(
a
d
j
(
A
)
)
=
I
1
(
A
)
d
e
t
(
A
)
{\displaystyle \mathrm {I} _{2}(\mathrm {adj} (\mathbf {A} ))=\mathrm {I} _{1}(\mathbf {A} )\mathrm {det} (\mathbf {A} )}
d
e
t
(
a
d
j
(
A
)
)
=
d
e
t
2
(
A
)
{\displaystyle \mathrm {det} (\mathrm {adj} (\mathbf {A} ))=\mathrm {det} ^{2}(\mathbf {A} )}
#Betrag :
‖
a
d
j
(
A
)
‖
=
I
2
(
A
⊤
⋅
A
)
=
2
2
‖
A
‖
4
−
‖
A
⊤
⋅
A
‖
2
{\displaystyle \|\mathrm {adj} (\mathbf {A} )\|={\sqrt {\mathrm {I} _{2}(\mathbf {A^{\top }\cdot A} )}}={\frac {\sqrt {2}}{2}}{\sqrt {\|\mathbf {A} \|^{4}-\|\mathbf {A^{\top }\cdot A} \|^{2}}}}
Weitere Eigenschaften:
a
d
j
(
x
A
)
=
x
2
a
d
j
(
A
)
{\displaystyle \mathrm {adj} (x\mathbf {A} )=x^{2}\mathrm {adj} (\mathbf {A} )}
d
e
t
(
A
)
≠
0
→
a
d
j
(
A
)
=
det
(
A
)
A
−
1
{\displaystyle \mathrm {det} (\mathbf {A} )\neq 0\quad \rightarrow \quad \mathrm {adj} (\mathbf {A} )=\det(\mathbf {A} )\mathbf {A} ^{-1}}
A
⋅
a
d
j
(
A
)
=
a
d
j
(
A
)
⋅
A
=
d
e
t
(
A
)
1
{\displaystyle \mathbf {A} \cdot \mathrm {adj} (\mathbf {A} )=\mathrm {adj} (\mathbf {A} )\cdot \mathbf {A} =\mathrm {det} (\mathbf {A} )\mathbf {1} }
a
d
j
(
A
⋅
B
)
=
a
d
j
(
B
)
⋅
a
d
j
(
A
)
{\displaystyle \mathrm {adj} (\mathbf {A\cdot B} )=\mathrm {adj} (\mathbf {B} )\cdot \mathrm {adj} (\mathbf {A} )}
a
d
j
(
A
⊤
)
=
a
d
j
(
A
)
⊤
{\displaystyle \mathrm {adj} (\mathbf {A} ^{\top })=\mathrm {adj} (\mathbf {A} )^{\top }}
a
d
j
(
A
+
B
)
=
1
2
(
A
#
A
+
2
A
#
B
+
B
#
B
)
⊤
=
a
d
j
(
A
)
+
a
d
j
(
B
)
+
A
⊤
#
B
⊤
{\displaystyle {\begin{aligned}\mathrm {adj} (\mathbf {A+B} )=&{\frac {1}{2}}(\mathbf {A} \#\mathbf {A} +2\mathbf {A} \#\mathbf {B} +\mathbf {B} \#\mathbf {B} )^{\top }\\=&\mathrm {adj} (\mathbf {A} )+\mathrm {adj} (\mathbf {B} )+\mathbf {A} ^{\top }\#\mathbf {B} ^{\top }\end{aligned}}}
a
d
j
(
a
d
j
(
A
)
)
=
d
e
t
(
A
)
A
{\displaystyle \mathrm {adj} \left(\mathrm {adj} (\mathbf {A} )\right)=\mathrm {det} (\mathbf {A} )\mathbf {A} }
a
d
j
(
A
i
j
e
^
i
⊗
e
^
j
)
=
1
2
(
A
k
l
A
m
n
ϵ
k
m
j
ϵ
l
n
i
)
(
e
^
i
⊗
e
^
j
)
=
…
…
=
(
A
22
A
33
−
A
23
A
32
A
32
A
13
−
A
33
A
12
A
12
A
23
−
A
13
A
22
A
23
A
31
−
A
21
A
33
A
33
A
11
−
A
31
A
13
A
13
A
21
−
A
11
A
23
A
21
A
32
−
A
22
A
31
A
31
A
12
−
A
32
A
11
A
11
A
22
−
A
12
A
21
)
{\displaystyle {\begin{aligned}&\mathrm {adj} (A_{ij}{\hat {e}}_{i}\otimes {\hat {e}}_{j})={\frac {1}{2}}(A_{kl}A_{mn}\epsilon _{kmj}\epsilon _{lni})({\hat {e}}_{i}\otimes {\hat {e}}_{j})=\ldots \\&\ldots ={\begin{pmatrix}A_{22}A_{33}-A_{23}A_{32}&A_{32}A_{13}-A_{33}A_{12}&A_{12}A_{23}-A_{13}A_{22}\\A_{23}A_{31}-A_{21}A_{33}&A_{33}A_{11}-A_{31}A_{13}&A_{13}A_{21}-A_{11}A_{23}\\A_{21}A_{32}-A_{22}A_{31}&A_{31}A_{12}-A_{32}A_{11}&A_{11}A_{22}-A_{12}A_{21}\end{pmatrix}}\end{aligned}}}
Definition
A
−
1
:
A
−
1
⋅
A
=
A
⋅
A
−
1
=
1
{\displaystyle \mathbf {A} ^{-1}:\quad \mathbf {A} ^{-1}\cdot \mathbf {A} =\mathbf {A\cdot A} ^{-1}=\mathbf {1} }
Die Inverse ist nur definiert, wenn
|
A
|
=
d
e
t
(
A
)
=
I
3
(
A
)
≠
0
{\displaystyle |\mathbf {A} |=\mathrm {det} (\mathbf {A} )=\mathrm {I} _{3}(\mathbf {A} )\neq 0}
Zusammenhang mit dem adjungierten Tensor
a
d
j
(
A
)
{\displaystyle \mathrm {adj} (\mathbf {A} )}
:
A
−
1
=
1
det
(
A
)
a
d
j
(
A
)
{\displaystyle \mathbf {A} ^{-1}={\frac {1}{\det(\mathbf {A} )}}\mathrm {adj} (\mathbf {A} )}
A
=
A
i
j
e
^
i
⊗
e
^
j
)
→
A
−
1
=
1
|
A
|
(
A
22
A
33
−
A
23
A
32
A
32
A
13
−
A
33
A
12
A
12
A
23
−
A
13
A
22
A
23
A
31
−
A
21
A
33
A
33
A
11
−
A
31
A
13
A
13
A
21
−
A
11
A
23
A
21
A
32
−
A
22
A
31
A
31
A
12
−
A
32
A
11
A
11
A
22
−
A
12
A
21
)
{\displaystyle {\begin{aligned}\mathbf {A} =&A_{ij}{\hat {e}}_{i}\otimes {\hat {e}}_{j})\\\rightarrow \mathbf {A} ^{-1}=&{\frac {1}{|\mathbf {A} |}}{\begin{pmatrix}A_{22}A_{33}-A_{23}A_{32}&A_{32}A_{13}-A_{33}A_{12}&A_{12}A_{23}-A_{13}A_{22}\\A_{23}A_{31}-A_{21}A_{33}&A_{33}A_{11}-A_{31}A_{13}&A_{13}A_{21}-A_{11}A_{23}\\A_{21}A_{32}-A_{22}A_{31}&A_{31}A_{12}-A_{32}A_{11}&A_{11}A_{22}-A_{12}A_{21}\end{pmatrix}}\end{aligned}}}
Werden die Spalten von A mit Vektoren bezeichnet, also
A
=
(
a
→
1
a
→
2
a
→
3
)
{\displaystyle \mathbf {A} ={\begin{pmatrix}{\vec {a}}_{1}&{\vec {a}}_{2}&{\vec {a}}_{3}\end{pmatrix}}}
, dann gilt:
A
−
1
=
(
a
→
1
a
→
2
a
→
3
)
⊤
=
1
d
e
t
(
A
)
(
a
→
2
×
a
→
3
a
→
3
×
a
→
1
a
→
1
×
a
→
2
)
⊤
{\displaystyle \mathbf {A} ^{-1}={\begin{pmatrix}{\vec {a}}^{1}&{\vec {a}}^{2}&{\vec {a}}^{3}\end{pmatrix}}^{\top }={\frac {1}{\mathrm {det} (\mathbf {A} )}}{\begin{pmatrix}{\vec {a}}_{2}\times {\vec {a}}_{3}&{\vec {a}}_{3}\times {\vec {a}}_{1}&{\vec {a}}_{1}\times {\vec {a}}_{2}\end{pmatrix}}^{\top }}
Satz von Cayley-Hamilton :
A
−
1
=
1
I
3
(
A
)
(
A
2
−
I
1
(
A
)
A
+
I
2
(
A
)
1
)
{\displaystyle \mathbf {A} ^{-1}={\frac {1}{\mathrm {I} _{3}(\mathbf {A} )}}(\mathbf {A} ^{2}-\mathrm {I} _{1}(\mathbf {A} )\mathbf {A} +\mathrm {I} _{2}(\mathbf {A} )\mathbf {1} )}
worin
I
1
,
2
,
3
{\displaystyle \mathrm {I} _{1,2,3}}
die drei #Hauptinvarianten sind.
Inverse des transponierten Tensors:
(
A
⊤
)
−
1
=
(
A
−
1
)
⊤
=
A
⊤
−
1
=
A
−
⊤
{\displaystyle (\mathbf {A} ^{\top })^{-1}=(\mathbf {A} ^{-1})^{\top }=\mathbf {A} ^{\top -1}=\mathbf {A} ^{-\top }}
Inverse eines Tensorprodukts:
(
A
⋅
B
)
−
1
=
B
−
1
⋅
A
−
1
{\displaystyle (\mathbf {A\cdot B} )^{-1}=\mathbf {B} ^{-1}\cdot \mathbf {A} ^{-1}}
(
x
A
)
−
1
=
1
x
A
−
1
{\displaystyle (x\mathbf {A} )^{-1}={\frac {1}{x}}\mathbf {A} ^{-1}}
#Äußeres Tensorprodukt und Inverse einer Summe:
(
A
+
B
)
−
1
=
1
det
(
A
+
B
)
(
a
d
j
(
A
)
+
a
d
j
(
B
)
+
(
A
#
B
)
⊤
)
{\displaystyle (\mathbf {A+B} )^{-1}={\frac {1}{\det(\mathbf {A+B} )}}\left(\mathrm {adj} (\mathbf {A} )+\mathrm {adj} (\mathbf {B} )+(\mathbf {A} \#\mathbf {B} )^{\top }\right)}
Invertierungsformeln:
(
a
1
+
b
→
⊗
c
→
)
−
1
=
1
a
(
1
−
1
a
+
b
→
⋅
c
→
b
→
⊗
c
→
)
{\displaystyle (a\mathbf {1} +{\vec {b}}\otimes {\vec {c}})^{-1}={\frac {1}{a}}\left(\mathbf {1} -{\frac {1}{a+{\vec {b}}\cdot {\vec {c}}}}{\vec {b}}\otimes {\vec {c}}\right)}
(
a
1
+
b
→
⊗
c
→
+
d
→
⊗
e
→
)
−
1
=
1
a
D
(
D
1
+
b
→
⊗
(
q
c
→
+
r
e
→
)
+
d
→
⊗
(
s
c
→
+
t
e
→
)
)
q
=
a
+
d
→
⋅
e
→
,
r
=
−
c
→
⋅
d
→
,
s
=
−
b
→
⋅
e
→
,
t
=
a
+
b
→
⋅
c
→
D
=
r
s
−
q
t
{\displaystyle {\begin{aligned}&(a\mathbf {1} +{\vec {b}}\otimes {\vec {c}}+{\vec {d}}\otimes {\vec {e}})^{-1}={\frac {1}{aD}}\left(D\mathbf {1} +{\vec {b}}\otimes (q{\vec {c}}+r{\vec {e}})+{\vec {d}}\otimes (s{\vec {c}}+t{\vec {e}})\right)\\&\qquad q=a+{\vec {d}}\cdot {\vec {e}},\quad r=-{\vec {c}}\cdot {\vec {d}},\quad s=-{\vec {b}}\cdot {\vec {e}},\quad t=a+{\vec {b}}\cdot {\vec {c}}\\&\qquad D=rs-qt\end{aligned}}}
(
a
→
i
⊗
g
→
i
)
−
1
=
g
→
i
⊗
a
→
i
{\displaystyle ({\vec {a}}_{i}\otimes {\vec {g}}_{i})^{-1}={\vec {g}}^{i}\otimes {\vec {a}}^{i}}