Formel von Faà di Bruno

mathematischer Satz

Die Formel von Faà di Bruno ist eine Formel der Analysis, die vom italienischen Mathematiker Francesco Faà di Bruno (1825–1888) publiziert wurde.

Mit ihr lassen sich höhere Ableitungen von komponierten Funktionen bestimmen, sie verallgemeinert somit die Kettenregel und gehört zu den Ableitungsregeln der Differentialrechnung.

FormulierungBearbeiten

Sind   und   zwei  -mal differenzierbare Funktionen, die von einer Variablen abhängen und deren Komposition wohldefiniert ist, und ist   der Differentialoperator nach dieser Variablen, so gilt

 .

Die Menge  , über die hier summiert wird, enthält alle  -Tupel   aus nichtnegativen, ganzen Zahlen mit  . Jedes solche Tupel lässt sich bijektiv auf eine Partition von   abbilden, in welcher der Summand     Mal vorkommt. Die Anzahl der Summanden ist daher die  -te Partitionszahl. Der Quotient der Fakultäten ist ein Multinomialkoeffizient.

Analogie zur Regel von LeibnizBearbeiten

So wie die Regel von Leibniz die Produktregel auf höhere Ableitungen verallgemeinert, so verallgemeinert die Formel von Faà di Bruno die Kettenregel auf höhere Ableitungen. Letztere Formel ist jedoch beweis- und rechentechnisch weitaus schwieriger.

Bei der Leibniz-Regel gibt es nur   Summanden, wohingegen bei der Faà di Brunoschen Formel mit der  -ten Partitionszahl   deutlich mehr Summanden auftreten.

Aussehen bei kleiner AbleitungsordnungBearbeiten

Schreibt man die Formel für die ersten natürlichen Zahlen aus (oder benutzt Ketten- und Produktregel iterativ), so sieht man, dass die Ausdrücke schnell lang und unhandlich werden und die Koeffizienten nicht offensichtlich sind:

 

Weitere Ableitungen lassen sich mit Computeralgebrasystemen wie zum Beispiel Mathematica oder Maple ausrechnen.

Anwendung bei der Verkettung von PotenzreihenBearbeiten

Sind   und   zwei Potenzreihen

 
 

mit positiven Konvergenzradien und der Eigenschaft

 

Dann ist die Verkettung   beider Funktionen lokal wieder eine analytische Funktion und somit um   in eine Potenzreihe entwickelbar:

 

Nach dem Satz von Taylor gilt:

 

Mit der Formel von Faà di Bruno kann man diesen Ausdruck nun in einer geschlossenen Formel in Abhängigkeit von den gegebenen Reihenkoeffizienten angeben, da:

 

Man erhält mit Multiindex-Schreibweise:

 

Dabei ist   der Multinomialkoeffizient zu   und   ist wieder die Menge aller Partition von   (siehe Partitionsfunktion).

AnwendungsbeispielBearbeiten

Mit Hilfe der Formel lassen sich die Koeffizienten in der Laurent-Reihe der Gammafunktion in 0 symbolisch angeben. Mit der Funktionalgleichung und   folgt

 .

Dabei gilt nach Faà di Bruno für die  -te Ableitung der Gammafunktion an der Stelle  

 

wobei wie oben über die entsprechende Menge   von  -Tupeln summiert wird. Beim letzten Gleichheitszeichen sind die Ableitungen der Digamma-Funktion   benutzt, wobei   die Euler-Mascheroni-Konstante und   die Riemannsche Zetafunktion bezeichnet.

WeblinksBearbeiten