Druckstoß

Längswelle in einem Rohrsystem
Auswirkung eines Joukowsky-Stoßes auf einen Flüssigkeitsschwimmer

Ein Druckstoß (auch Wasserhammer oder Druckschlag, englisch pressure surge) bezeichnet die dynamische Druckänderung eines Fluids. Der Druckanstieg in einer Rohrleitung, der beim zu raschen Schließen einer Absperr- oder Stellarmatur auftritt, wird als Joukowskistoß bezeichnet.

Druckstöße sind in technischen Anlagen generell unvermeidlich (sie wären nur mit einer unendlich langen Schließzeit zu verhindern), weil diese mittels Armaturen geregelt werden. Das Ausmaß eines Druckstoßes lässt sich jedoch mindern.

Druckstöße bewirken in flüssigkeitsgefüllten Systemen höhere Druckanstiege als in gasgefüllten, weil Flüssigkeiten weniger kompressibel sind als Gase.

Die Information Druck wird von Druckwellen weitergegeben. Es handelt sich dabei immer um Longitudinalwellen.

GeschichteBearbeiten

 
Nikolai Joukowsky

Bereits seit der Antike sind die grundsätzlichen Ursachen für Druckstöße in flüssigkeitsgefüllten Rohrleitungen und die damit verbundene Gefahr der Anlagenbeschädigung/-zerstörung bekannt. Marcus Vitruvius Pollio beschrieb im 1. Jahrhundert vor Christus das Auftreten von Druckstößen in Blei- und Steinrohren der römischen Wasserversorgung.[1]

1883 veröffentlichte Johannes von Kries die Theorie des Druckstoßes in einer Veröffentlichung über den Blutfluss in Arterien.[2] Damit hat er entgegen der landläufigen Meinung vor Nikolai Joukowsky die Joukowsky-Formel aufgestellt. Dieser führte 1897 ausführliche Experimente an Trinkwasserleitungen durch und veröffentlichte seine Ergebnisse 1898.[3] Als generelle Bezeichnung des Druckstoßes setzte sich daraufhin der Begriff Joukowsky-Stoß durch.

UrsachenBearbeiten

Soll ein Fluid in einer Rohrleitung beschleunigt bzw. abgebremst werden (Bremsung als negative Beschleunigung), so ist dafür aufgrund der Trägheit des Fluids eine gewisse Kraft nötig.[4] Das zweite Newtonsche Gesetz besagt:

 

mit

  • der Kraft  
  • dem Druck  
  • der Querschnittsfläche   der Rohrleitung.

Die nötige Kraft resultiert in einer Änderung des Druckes. Beschleunigt (bzw. abgebremst) wird ein Fluid in einer Rohrleitung z. B. durch das Schließen eines Ventils oder einer Absperrklappe (Klappenschlag) sowie durch das An- und Abfahren von Pumpen.[4]

Die meisten Pumpen sind mit Rückschlagklappen versehen. Werden zwei oder mehr solcher Pumpen parallel betrieben und findet ein Umschalten der Pumpen statt, so kann durch die auslaufende(n) Pumpe(n) eine Rückströmung entstehen, welche von der Rückschlagklappe verhindert werden soll. Wird eine herkömmliche (relativ langsam schließende) Rückschlagklappe verwendet, so schließt diese erst, wenn sich die Rückströmung bereits teilweise ausgebildet hat; in diesem Fall entsteht ein Druckstoß.

AuswirkungenBearbeiten

Durch zu hohe Druckstöße können Schäden an der betroffenen Anlage auftreten. Rohrleitungen können schlimmstenfalls platzen oder Halterungen der Rohrleitungen können beschädigt werden. Zudem sind Armaturen, Pumpen, Fundamente und weitere Bestandteile des Leitungssystems (z. B. Wärmeübertrager) gefährdet. Bei Trinkwasserleitungen kann ein Druckstoß dazu führen, dass von außen Schmutzwasser eingesaugt wird.

Da Schäden an Rohrleitungen nicht zwangsläufig sofort ersichtlich sind (z. B. bei der Beschädigung eines Flansches), ist es nötig, sich schon bei der Planung einer Rohrleitung mit dem Druckstoß zu beschäftigen.

Beim hydraulischen Widder ist der Effekt des Druckstoßes jedoch essenziell für seine Funktion.

DruckerhöhungBearbeiten

Wird ein Fluid in einer Rohrleitung durch ein Ventil abgebremst, so wird stromaufwärts des Ventils Bewegungsenergie   frei:

 

mit

  • der Flüssigkeitsmasse m
  • der Geschwindigkeit v.

Dieser Energiebetrag wird in Volumenänderungsarbeit umgewandelt:[5]

 

mit

  • dem Anfangsvolumen V1
  • dem Endvolumen V2
  • der Druckänderung p dV.

Das Fluid wird also komprimiert. Da beispielsweise Wasser aufgrund seines hohen Kompressionsmoduls nahezu inkompressibel ist, entstehen bei der Verrichtung der Volumenänderungsarbeit hohe Drücke.

Dieser Zusammenhang steht analog zum Bremsweg eines Autos: je kürzer der Bremsweg, desto höheren Kräften sind die Fahrzeuginsassen ausgesetzt.

Da wasserführende Leitungen beim Betreiben einer Anlage teilweise sehr schnell geschlossen werden müssen (z. B. bei einem Lastabwurf), sind die entstehenden Druckstöße dementsprechend hoch.

SchädenBearbeiten

Trotz moderner Simulationsprogramme und langer Erfahrung mit Druckstößen sind auch heute immer wieder Schäden an Rohrleitungen zu beobachten.

Einer der spektakulärsten Unfälle der letzten Jahre ereignete sich 1998 in New York City, als eine Hauptwasserleitung mit 48 Zoll Durchmesser brach und die Fifth Avenue überflutete.[6]

Auch in Hamburg kam es am Samstag, dem 4. Juli 2009, zu mehreren Druckstoßschäden. Nach einem Spannungseinbruch in der Stromversorgung fielen im gesamten Hamburger Stadtgebiet abrupt Pumpen in 14 Wasserwerken aus. Dies verursachte unzulässig hohe Druckstöße. Als der Druck beim Anfahren der Pumpen wieder stieg, kam es zum Bruch der zuvor geschädigten Leitungen. Als Folge kam es zwischen 17.20 Uhr am Samstag und 18.45 Uhr am Sonntag zu insgesamt 16 Wasserrohrbrüchen.[7]

DrucksenkungBearbeiten

Beim Schließen einer Armatur bewegt sich stromabwärts das Fluid von der Armatur weg. Die Druckänderung wird deshalb negativ. Unterschreitet der Druck den Dampfdruck des Fluids, so bildet sich eine Dampfblase. Durch den dann vorherrschenden Unterdruck wird das Fluid in Gegenrichtung beschleunigt und trifft auf das geschlossene Ventil. Es entsteht ein Kavitationsschlag, der dieselben Auswirkungen wie ein Druckstoß hat. Dieses Abreißen der Wassersäule wird auch als Makrokavitation bezeichnet.

BerechnungBearbeiten

Der Joukowsky-StoßBearbeiten

Der Druckstoß wurde von Joukowsky im Jahre 1898 erkannt und von Allievi im Jahre 1905 theoretisch hergeleitet:[8]

 

mit

  • der Druckänderung   in N/m²
  • der Dichte   in kg/m³
  • der Wellenfortpflanzungsgeschwindigkeit   in m/s; sie beträgt bei Fluiden   mit
  • der Geschwindigkeitsänderung   in m/s.

Diese Beziehung gilt nur für Rohrleitungen, bei denen

  • die Wandreibung in Bereichen des Wassertransportes oder darunter liegt,
  • die Geschwindigkeitsänderung unter der Wellenfortpflanzungsgeschwindigkeit liegt ( ) und
  • der Zeitraum   der Geschwindigkeitsänderung kleiner als die Reflexionszeit   ist ( ).

GrößenordnungBearbeiten

Für Wasser   liefert eine typische Geschwindigkeitsänderung   einen Joukowsky-Stoß

 .

Unter Beachtung der SchließzeitBearbeiten

 
Prinzip der Wellenreflexion

Wenn die Schließzeit des Absperrorganes (oder die Nachlaufzeit der Pumpe) beachtet werden, ergeben sich weniger konservative Werte als die o. g. technisch maximal mögliche Druckerhöhung:[9]

  mit  

mit

  • der Reflexionszeit   in s:  
    • der Länge   der Rohrleitung in m
  • der Schließzeit   der Armatur in s.

Die Reflexionszeit beschreibt die Zeit, die nötig ist, damit die Information „Druckänderung“ von der Armatur bis zum Leitungsende und wieder zur Armatur weitergegeben wird. Bei dieser Abschätzung des Druckstoßes fällt die Wellenfortpflanzungsgeschwindigkeit nicht mehr ins Gewicht. Zu einer genaueren Abschätzung können Ventilkennlinien mit einbezogen werden. Im Detail kann man dann die Rekursionsformel nach Allievi (ohne Rohrreibung) anwenden, um die Druckerhöhung aufgrund des Ventilschließvorganges zu berechnen.

Druckstöße in LeitungenBearbeiten

AllgemeinBearbeiten

Der oben berechnete Joukowsky-Druckstoß unter Verwendung der Wellenfortpflanzungsgeschwindigkeit des Strömungsmediums stellt die ideale, physikalisch maximal mögliche Druckerhöhung bei einer unendlich steifen Rohrleitung dar. Um realere Werte zu erreichen, wird die Elastizität der Rohrwand bei der Berechnung berücksichtigt, was die Wellenfortpflanzungsgeschwindigkeit und damit die Druckerhöhung reduziert.

Für c in m/s gilt:[4]

 

mit

  •   = Kompressionsmodul des Fluids in N/m²
  •   = Innendurchmesser des Rohrs in m
  •   = Querkontraktionszahl des Rohrmaterials
  •   = Elastizitätsmodul der Rohrwand in N/m²
  •   = Rohrwanddicke in m.

Sonderfall dünnwandiges RohrBearbeiten

Beim dünnwandigen Rohr vereinfacht sich die Gleichung der Wellenfortpflanzungsgeschwindigkeit zu:

 

Sonderfall FelsstollenBearbeiten

Bei in Fels geschlagenen Stollen ist die Wanddicke unbestimmt extrem groß, somit gilt für diese Anwendung:

 

mit

  •   = Elastizitätsmodul des Felses in N/m².[10]

Line-PackingBearbeiten

In einer fließenden Rohrleitungs-Strömung kommt es aufgrund von Reibungsdruckverlusten (Wandreibung und Dissipation) zu einer Druckreduzierung. Bei einem Stillstand der Strömung infolge eines Ventilschließvorganges fällt dies schlagartig fort, was zu einem zusätzlichen Druckanstieg führt, der zum Joukowsky-Stoß zu addieren ist.

Die Joukowsky-Gleichung stellt u. a. deshalb nur eine ungenaue Näherung dar, der real entstehende Druckstoß kann noch höhere Drücke erreichen (z. B. in Pipelines). Deshalb müssen Druckstöße evtl. numerisch simuliert werden.

Reduzierende Maßnahmen und FaktorenBearbeiten

  • Eine Erhöhung der Ventilschließzeit bewirkt eine Minderung des Druckstoßes. Dies lässt sich z. B. durch hydraulisch unterstützte Klappen erreichen.
  • Schnell schließende Rückschlagklappen vermeiden einen Druckstoß beim Umschalten von Pumpen.
  • Schwungräder bewirken längere Anfahr- und Abfahrzeiten von Pumpen.
  • Wasserschlösser bewirken, dass das Fluid frei ausschwingen kann.
  • Vakuumbrecher mindern den Kavitationsschlag.
  • Druckstoßkessel, mit der Leitung verbundene zylindrische Druckbehälter in Nähe der Pumpen, die mit Luft gefüllt sind und den Stoß dämpfen

Numerische BerechnungsmethodenBearbeiten

Für Rohrleitungssysteme werden Druckstoßberechnungen auf numerischem Wege durchgeführt. Dafür gibt es spezielle, leistungsfähige Computerprogramme.

Als Grundlage dieser Programme dienen Druckstoßgleichungen, welche aus den Gesetzen der Massenerhaltung und der Impulserhaltung resultieren. Im Vergleich zu analytischen Methoden sind diese nicht nur für kompressible, sondern auch für inkompressible Medien geeignet. Die Rohrleitung wird in zahlreiche Einzelsegmente unterteilt und der Druckstoß in kleinen Zeitabschnitten berechnet. Ausgegeben werden die Ergebnisse z. B. als Zeitfunktionen der Drücke, der Dichten, der Massenströme, der Stellgrößen der Ventile oder der Pumpendaten. Es können auch dynamische Lasten berechnet werden, welche einer Strukturanalyse des Rohrleitungssystems dienen.

Für numerische Lösungsverfahren werden jedoch schnelle Computersysteme benötigt. Außerdem muss zur Berechnung personeller Aufwand betrieben werden. Da so immense Kosten verursacht werden können, sollte ein Druckstoß nur dann numerisch berechnet werden, wenn es unbedingt notwendig ist.

Siehe auchBearbeiten

EinzelnachweiseBearbeiten

  1. A. Ismaier: Untersuchung der fluiddynamischen Wechselwirkung zwischen Druckstößen und Anlagenkomponenten in Kreiselpumpensystemen. Dissertation. 2010, ISBN 978-3-8322-9779-4.
  2. A. S. Tijsseling, A. Anderson: A precursor in waterhammer analysis – rediscovering Johannes von Kries. S. 1–15. (pdf)
  3. N. E. Joukowsky: Über den hydraulischen Stoss in Wasserleitungsröhren. In: Mémoires de I’Académie Impériale des Sciences de St.-Pétersbourg, Ser. 8, 9, 1900, S. 1–72.
  4. a b c H.-J. Lüdecke, B. Kothe: Der Druckstoß (= KSB Know-how. Band 1). KSB AG, Halle 2013, S. 5, 11, 14 (ksb.com [PDF; 1000 kB; abgerufen am 25. Juni 2016]).
  5. E. Doering, H. Schedwill, M. Dehli: Grundlagen der technischen Thermodynamik: Lehrbuch für Studierende der Ingenieurwissenschaften. 6. Band, 2008, ISBN 978-3-519-46503-4, S. 13.
  6. Water Main Break. (Memento vom 10. Februar 2008 im Internet Archive) auf der Webseite des New York Department of Environmental Protection
  7. Spannungseinbruch im Hamburger Stromnetz führt zu zahlreichen Wasserrohrbrüchen. (Memento vom 30. April 2016 im Internet Archive) auf: Hamburg Wasser, abgerufen am 2. Januar 2011.
  8. Theodor Strobl, Franz Zunic: Wasserbau, Aktuelle Grundlagen – Neue Entwicklungen. Springer Verlag, Berlin/ Heidelberg 2006, S. 321.
  9. G. Wossog: Handbuch Rohrleitungsbau. 2. Band: Berechnung. Vulkan-Verlag, Essen 1998, ISBN 3-8027-2716-9, S. 279.
  10. Ernesto Ruiz Rodriguez: Elastizitätsmodul. (Memento vom 7. April 2014 im Internet Archive) Teil einer Studienarbeit an der FH Wiesbaden. (MS-Excel; 85 kB)