Eine Drehmatrix oder Rotationsmatrix ist eine reelle, orthogonale Matrix mit Determinante +1. Ihre Multiplikation mit einem Vektor lässt sich interpretieren als (sogenannte aktive) Drehung des Vektors im euklidischen Raum oder als passive Drehung des Koordinatensystems, dann mit umgekehrtem Drehsinn. Bei der passiven Drehung ändert sich der Vektor nicht, er hat bloß je eine Darstellung (Koordinatenwerte) im alten und im neuen Koordinatensystem. Dabei handelt es sich stets um Drehungen um den Ursprung, da die Multiplikation einer Matrix mit dem Nullvektor diesen auf sich selbst abbildet.

In ungeraden Dimensionen werden durch eine Drehung weitere Vektoren auf sich selbst abgebildet, . Im dreidimensionalen Raum handelt es sich also um eine Gerade, die Drehachse. Eine Drehmatrix enthält trigonometrische Ausdrücke des Drehwinkels und der Orientierung des invarianten Unterraumes. In geraden Dimensionen muss die Drehmatrix keinen reellen Eigenwert haben.

Drehmatrix der Ebene ℝ²Bearbeiten

In der euklidischen Ebene   wird die Drehung eines Vektors   (aktive Drehung, Überführung in den Vektor  ) um einen festen Ursprung um den Winkel   mathematisch positiv (gegen den Uhrzeigersinn) durch die Multiplikation mit der Drehmatrix   erreicht:

 

Jede Rotation um den Ursprung ist eine lineare Abbildung. Wie bei jeder linearen Abbildung genügt daher zur Festlegung der Gesamtabbildung die Festlegung der Bilder der Elemente einer beliebigen Basis. Wird die Standardbasis gewählt, sind die Bilder der Basisvektoren gerade die Spalten der dazugehörigen Abbildungsmatrix.

Hier wirkt   auf die beiden Basisvektoren wie folgt:

 

Für die Drehmatrix einer Drehung um   ergibt sich damit

 

Zur Drehung eines Punktes   um den Winkel   kann man einfach den zugehörigen (als Spaltenvektor geschriebenen) Ortsvektor   durch Anwenden der obigen Formel   drehen, um den Ortsvektor   des neuen Punktes   zu erhalten:

 
 

Diese Matrixmultiplikation ergibt:

 
 

Bei der passiven Drehung wird das Koordinatensystem mathematisch positiv gedreht. Der Vektor   erscheint im gedrehten Koordinatensystem als im Uhrzeigersinn zurück gedrehter Vektor  . Seine Koordinaten im gedrehten Koordinatensystem findet man durch Multiplikation mit der Matrix  :

 

Die Drehmatrix für die passive Drehung ist:

 

Die Verkettung zweier positiver Drehungen um die Winkel   bzw.   ist erneut eine Drehung, und zwar um den Winkel   (siehe auch Kreisgruppe). Die zur Verkettung gehörende Matrix kann mittels Multiplikation aus den beiden einzelnen Drehmatrizen berechnet werden:

 

Drehmatrizen des Raumes ℝ³Bearbeiten

Die elementaren Drehungen im   sind Drehungen um die üblichen kartesischen Koordinatenachsen. Die folgenden Matrizen drehen einen Punkt (bzw. Vektor) um den Winkel   bei festen Koordinatenachsen. In der Physik werden häufig Drehungen des Koordinatensystems benutzt, dann müssen bei den untenstehenden Matrizen die Vorzeichen aller Sinus-Einträge geändert werden. Die Drehung eines Vektors um einen bestimmten Winkel in einem Koordinatensystem führt auf dieselben Spaltenvektoren wie die Drehung des Koordinatensystems um den gleichen Winkel in umgekehrter Richtung (Drehung um negativen Winkel).

Die Matrizen gelten sowohl für Rechts- als auch für Linkssysteme. Drehungen mit positiven Drehwinkeln sind im Rechtssystem Drehungen entgegen dem Uhrzeigersinn. Im Linkssystem wird bei positiven Winkeln mit dem Uhrzeigersinn gedreht. Der Drehsinn ergibt sich, wenn man entgegen der positiven Drehachse auf den Ursprung schaut. In Rechtssystemen kann auch eine Rechte-Hand-Regel angewandt werden: Zeigt der Daumen der rechten Hand in Richtung der Drehachse, so geben die gebeugten restlichen Finger die Richtung des Drehwinkels an. Im Ergebnis ist das Vorzeichen der Sinus-Einträge der Drehung um die  -Achse anders als bei den beiden anderen Matrizen.

  • Drehung um die  -Achse:
 
  • Drehung um die  -Achse:
 
  • Drehung um die  -Achse:
 
  • Drehung um eine Ursprungsgerade, deren Richtung und Orientierung durch den beliebigen Einheitsvektor   gegeben ist:
 

Diese beliebige Drehung lässt sich auch über drei aufeinanderfolgende Drehungen mit den eulerschen Winkeln um bestimmte Koordinatenachsen erzielen, sodass sich diese Matrix auch mit diesen Winkeln formulieren lässt.

Eine Drehung um eine beliebige Achse   (mit  ) um den Winkel   lässt sich im   schreiben als:

 

Dies lässt sich mit der Graßmann-Identität für doppelte Kreuzprodukte und dem dyadischen Produkt   umformen zu:

 

Dabei ist   die Einheitsmatrix und   sind die kanonischen Einheitsvektoren.   ist die Kreuzproduktmatrix von  . Der Term in geschweiften Klammern stellt die Drehmatrix im   dar. In Komponentendarstellung schreibt sich diese so:

 

Dabei sind   das Kronecker-Delta und   das Levi-Civita-Symbol.

Eine Drehmatrix   im   hat den Eigenwert 1, dieser ist nicht entartet, und der zugehörige Eigenraum bildet die Drehachse.

ParametrisierungBearbeiten

Für Drehmatrizen im dreidimensionalen Raum sind mehrere Parametrisierungen bekannt:

 

Darin ist   der Drehwinkel,   der Einheitsvektor in Richtung der Drehachse und   ist die Kreuzproduktmatrix des Rotationsvektors. Die Auflistung gibt vier Darstellungen derselben Drehmatrix, die mit Winkel   um die Drehachse   dreht.

Drehmatrizen des Raumes ℝⁿBearbeiten

Im  -dimensionalen Raum wird eine Drehung nicht durch eine Drehachse, sondern durch die Ebene definiert, die bei der Drehung auf sich selbst abgebildet wird. Das gilt auch in zwei Dimensionen, wo die Dreh-„Achse“ nur ein Punkt ist. Seien im   die Vektoren   und   zwei zueinander orthogonale Einheitsvektoren (also   und  ), die demnach eine Ebene aufspannen. Seien  ,  , und   die Einheitsmatrix. Dann vermittelt die Matrix

 

eine Drehung um den Winkel   in der   im  . Dabei wurde

 

und   definiert. Die Darstellung   ergibt sich aus den Identitäten

 

sowie

 

Eigensystem der DrehmatrizenBearbeiten

Von   wird jeder auf   und   senkrecht stehende Vektor   (mit  ) auf sich selbst abgebildet. Also sind diese Vektoren   Eigenvektoren von   mit Eigenwert 1. Zwei Eigenwerte von   sind   mit den Eigenvektoren  , worin   die imaginäre Einheit definiert. Aus diesen komplexen Eigenwerten und Eigenvektoren kann man also den Drehwinkel und die Drehebene rekonstruieren. Des Weiteren gilt bei Drehung in einer Ebene:

 

Allerdings kann eine Drehung im  -dimensionalen Raum gleichzeitig in   (falls   gerade) oder   (falls   ungerade) Ebenen auch mit mehreren unterschiedlichen Winkeln stattfinden. Dadurch kann es in geraden Dimensionen dazu kommen, dass eine allgemeine Drehmatrix nicht den Eigenwert 1 hat.

Allgemeine DefinitionBearbeiten

Eine  -Matrix   mit reellen Komponenten heißt Drehmatrix, wenn sie

a) die Länge von Vektoren und die Winkel zwischen Vektoren erhält (ausgedrückt durch das Skalarprodukt), wenn also für alle Vektoren   und   des   gilt:
 

und

b) orientierungserhaltend ist, wenn also   gilt.

Drehmatrizen sind orthogonale Matrizen mit der Determinante +1.

EigenschaftenBearbeiten

Weitere Eigenschaften von Rotationsmatrizen  :

  •   (orthogonal), folgt aus dem ersten Teil der Definition:
 
  •   (Transponierte und Inverse von R sind gleich), folgt aus der Orthogonalität.
  •   (Determinante), entspricht dem zweiten Teil der Definition.
  • Die Ausrichtung des Koordinatensystems (Rechts- oder Linkssystem) wird beibehalten, da   positive Orientierung.
  • Die Kombination einer Drehung   mit anschließender Drehung   erfolgt mit der Matrix  . Weil die Matrizenmultiplikation nicht kommutativ ist, führt die umgekehrte Reihenfolge   im Allgemeinen zu einem anderen Ergebnis. Nur bei infinitesimal kleinen Drehungen ist die Reihenfolge vertauschbar, siehe #Kommutativität infinitesimaler Drehungen.
 
  • Zusätzlich zur algebraischen Struktur einer Gruppe besitzt die Menge aller Drehmatrizen auch eine topologische Struktur: Die Operationen Multiplikation und Inversion von Drehmatrizen sind stetig differenzierbare Funktionen ihrer Parameter, der Drehwinkel. Die   bildet eine differenzierbare Mannigfaltigkeit und ist somit eine Lie-Gruppe. Diese hat die Dimension  .
  • Mit der Lie-Gruppe   ist eine Lie-Algebra   verknüpft, ein Vektorraum mit einem bilinearen alternierenden Produkt (Lie-Klammer), wobei der Vektorraum bezüglich der Lie-Klammer abgeschlossen ist. Dieser Vektorraum ist isomorph zum Tangentialraum am neutralen Element der   (neutrales Element ist die Einheitsmatrix), sodass insbesondere   gilt. Die Lie-Algebra besteht aus allen schiefsymmetrischen  -Matrizen und ihre Basis sind die sog. Erzeugenden. Die Exponentialabbildung verknüpft die Lie-Algebra mit der Lie-Gruppe:
 

Speziell bei Drehungen in einer Ebene gilt für Rotationsmatrizen  :

  •  
  • Zwei Vektoren spannen die Drehebene auf und   Vektoren werden von   auf sich abgebildet. In drei Dimensionen wird ein Vektor auf sich abgebildet, der dann die Drehachse erzeugt.
  • Die zur Drehebene senkrechten Vektoren   sind Lösung von
 
Da   für ungerade Dimensionen nicht regulär ist, ist die Berechnung dieser Vektoren über eine Eigenwertzerlegung durchzuführen. Die Vektoren   sind Eigenvektor von   mit Eigenwert 1. In geraden Dimensionen muss kein Eigenvektor zum Eigenwert 1 existieren, was im Fall   anschaulich klar ist.
  • Der Drehwinkel   ergibt sich über das Skalarprodukt:
 
mit   in der Drehebene, in drei Dimensionen also orthogonal zur Drehachse, oder aus der Spur der Drehmatrix
 
(siehe auch Formel für die Matrix einer Drehung um eine allgemeine Achse oben).

Infinitesimale DrehungenBearbeiten

Betrachtet man Drehungen um infinitesimal kleine Winkel  , so ist es ausreichend, die Winkelfunktionen der endlichen Drehung bis zur ersten Ordnung zu entwickeln (  bzw.  ). Damit lassen sich nun infinitesimale Drehungen darstellen als

 

wobei   die Einheitsmatrix und   die Erzeugende einer infinitesimalen Drehung darstellt. Die Erzeugenden sind die Ableitungen der Rotationsmatrix an der Stelle der Identität und bilden die Basis der Lie-Algebra   (Beispiel siehe unten).

 

Eine endliche Drehung lässt sich durch Hintereinanderausführung infinitesimaler Drehungen erzeugen:

 

Dabei wurde die Exponentialfunktion identifiziert. Die Exponentialfunktion von Matrizen ist über die Reihendarstellung definiert, wie im letzten Schritt gezeigt. Es lässt sich zeigen, dass Erzeugende spurfrei sein müssen:

 

und schiefsymmetrisch sind:

 

Mit dem Konzept der Erzeugenden lässt sich die lokale Gruppenstruktur der   in der Umgebung der identischen Abbildung ausdrücken, und zwar durch die infinitesimalen Drehungen. Wegen des Zusammenhangs über die Exponentialfunktion wird aus einer Multiplikation von Drehmatrizen eine Addition ihrer Erzeugenden. Die Erzeugenden bilden einen Vektorraum derselben Dimension   wie die Drehgruppe  ; somit gibt es   linear unabhängige Erzeugende der Gruppe  .

Die Erzeugenden   bilden mit dem Lie-Produkt (Kommutator) die sog. Lie-Algebra  . Eine Algebra besitzt zwei Gruppenstrukturen, die kommutative Addition und eine Multiplikation (Lie-Produkt). Der Kommutator zweier Erzeugenden liegt wieder in der Menge der Erzeugenden (Abgeschlossenheit):

 

Die Koeffizienten   sind charakteristische Konstanten der Gruppe. Für alle doppelten Kommutatoren gilt die Jacobi-Identität:

 

In der theoretischen Physik spielen Lie-Gruppen eine wichtige Rolle, z. B. in der Quantenmechanik (siehe Drehimpulsoperator) oder der Elementarteilchenphysik.

Ebene ℝ²Bearbeiten

Für Drehungen im   lauten die infinitesimale Drehung und ihre Erzeugende:

 

Für die   gibt es nur eine linear unabhängige Erzeugende.

Eine endliche Drehung lässt sich über die Exponentialfunktion des Drehwinkels und der Erzeugenden darstellen. Dies wird hier auf eine weitere Art gezeigt: Die Drehmatrix wird in einen symmetrischen und antisymmetrischen Anteil zerlegt und die trigonometrischen Funktionen werden durch ihre Taylorreihe dargestellt.

 

Mit   bzw.   folgt das von oben bekannte Ergebnis:

 

Raum ℝ³Bearbeiten

Für Drehungen im   um die kartesischen Koordinatenachsen lauten die infinitesimalen Drehungen und ihre Erzeugenden:

 

Für die   gibt es drei linear unabhängige Erzeugende. Gegenüber endlichen Drehungen vertauschen infinitesimale Drehungen miteinander (der Kommutator verschwindet in erster Ordnung in  ).

Eine infinitesimale Drehung und ihre Erzeugende um eine beliebige Achse   (mit  ) lässt sich auch schreiben als:

 
 

Hieran sieht man, dass eine beliebige Erzeugende stets eine schiefsymmetrische Matrix ist.

Eine endliche Drehung um eine beliebige Achse   (mit  ) um den Winkel   lässt sich so darstellen:

 

Die Erzeugenden  ,  ,   bilden die sog. Lie-Algebra  , d. h., der Kommutator (Lie-Produkt) zweier Erzeugenden liegt wieder in der Menge der Erzeugenden:

 

und ebenso für alle zyklischen Permutationen der Indizes.

Kommutativität infinitesimaler DrehungenBearbeiten

Zwei infinitesimale Drehungen sind in ihrer Reihenfolge vertauschbar, was bei großen Drehungen im Allgemeinen nicht der Fall ist, siehe #Eigenschaften. Ersichtlich ist das am Produkt zweier infinitesimaler Drehungen   und  

 

denn die Terme, die proportional zum Produkt   zweier infinitesimaler Größen sind, können gegenüber den anderen vernachlässigt werden.

Bestimmung der Drehung zwischen zwei LagenBearbeiten

Gegeben sei die Lage eines Körpers in zwei Positionen. Außerdem sei die Positionsänderung durch Drehung um den Ursprung erfolgt. Gesucht ist die oder eine Drehmatrix, die diese Drehung beschreibt. Im  -dimensionalen Raum wird die Lage des Körpers durch   Punkte   beschrieben, welche die Matrix   bilden. Die Ausgangslage werde durch  , die verdrehte Lage durch   beschreiben. Dann gilt für die Drehung

 

Ist   regulär, dann kann die Drehmatrix einfach durch Rechtsmultiplikation mit   bestimmt werden:

 

Ist   nicht regulär, weil zum Beispiel einer der Punkte des Körpers im Ursprung liegt, dann kann die Inverse nicht gebildet werden. Auch die Pseudoinverse führt hier nicht zum Ziel. Allerdings kann eine Singulärwertzerlegung durchgeführt werden. Diese liefert für eine Matrix   die unitären Matrizen   und   sowie die Diagonalmatrix   der Singulärwerte:

 

Man kann zeigen, dass die Singulärwerte über einer Rotation invariant sind. Es gilt also   und damit

 

Siehe auchBearbeiten

LiteraturBearbeiten

  • Gerd Fischer: Lineare Algebra. Eine Einführung für Studienanfänger. 17. aktualisierte Auflage. Vieweg + Teubner, Wiesbaden 2010, ISBN 978-3-8348-0996-4 (Studium. Grundkurs Mathematik).
  • Karlheinz Goldhorn: Moderne mathematische Methoden der Physik. Band 2. Springer, Berlin u. a. 2010, ISBN 978-3-642-05184-5 (Springer-Lehrbuch).
  • Max Koecher: Lineare Algebra und analytische Geometrie. 4. ergänzte und aktualisierte Auflage. Springer, Berlin u. a. 1997, ISBN 3-540-62903-3 (Grundwissen Mathematik – Springer-Lehrbuch).
  • Florian Scheck: Theoretische Physik. Band 1: Mechanik, von den Newtonschen Gesetzen zum deterministischen Chaos. 8. Auflage. Springer, Berlin u. a. 2007, ISBN 978-3-540-71377-7.
  • J. Hanson: Rotations in three, four, and five dimensions. arxiv:1103.5263.

WeblinksBearbeiten