Hauptmenü öffnen

Bild (Mathematik)

Menge der Werte aus der Zielmenge, die eine Funktion tatsächlich annimmt
(Weitergeleitet von Bildbereich)
Das Bild dieser Funktion ist
{A, B, D}

Bei einer mathematischen Funktion ist das Bild, die Bildmenge oder der Bildbereich einer Teilmenge des Definitionsbereichs die Menge der Werte aus der Zielmenge , die auf tatsächlich annimmt.[1]

Häufig werden dafür auch die Wörter Wertemenge[2] oder Wertebereich[1] benutzt, die aber bei anderen Autoren zur Bezeichnung der ganzen Zielmenge [3] verwendet werden.

DefinitionBearbeiten

Üblichste NotationBearbeiten

Für eine Funktion   und eine Teilmenge   von   bezeichnet man die folgende Menge als das Bild von M unter f:

 

Das Bild von f ist dann das Bild der Definitionsmenge unter  , also:

 

Im Allgemeinen nutzt man die übliche Mengennotation, um die Bildmenge darzustellen, in obigem Beispiel:

 

Alternative NotationenBearbeiten

  • Für   wird auch die Notation   verwendet, um kenntlich zu machen, dass   nicht auf   als Ganzem, sondern elementweise auf die Mitglieder dieser Menge anzuwenden ist. Als weitere Bezeichnungsweise kommt gelegentlich   vor.[4][5]
  • Für   ist auch die englische Bezeichnung   („im“ vom englischen Wort image) gebräuchlich.

BeispieleBearbeiten

Wir betrachten die Funktion   (ganze Zahlen) mit  .

  • Hierbei werden verschiedene Eingabemengen nicht unbedingt auf verschiedene Bildmengen geschickt:
 
 
 
  • Insgesamt ist die Menge der Quadratzahlen das Bild der Funktion:
 

EigenschaftenBearbeiten

Es sei   eine Funktion und   und   seien Teilmengen von  :

  •  
  •  
  •   ist genau dann surjektiv, wenn  .
  •  
  •  
    Ist   injektiv, dann gilt hier ebenfalls die Gleichheit.

Die Aussagen über Vereinigung und Durchschnitt lassen sich von zwei Teilmengen auf beliebige nichtleere Familien von Teilmengen verallgemeinern.

Siehe auchBearbeiten

EinzelnachweiseBearbeiten

  1. a b Harro Heuser: Lehrbuch der Analysis. Teil 1. 8., überarbeitete Auflage. B. G. Teubner, Stuttgart 1990, ISBN 3-519-12231-6, S. 106.
  2. Reinhard Dobbener: Analysis. Studienbuch für Ökonomen. 4., korrigierte Auflage. Oldenbourg Wissenschaftsverlag, München u. a. 2007, ISBN 978-3-486-57999-4, S. 12, Definition 1.12.
  3. Michael Ruzicka, Lars Diening: Analysis I. Vorlesung vom Wintersemester 2004/2005. (Memento vom 23. Januar 2005 im Internet Archive). S. 21. (Memento vom 21. Oktober 2013 im Internet Archive) (PDF; 74 kB).
  4. Jean E. Rubin: Set Theory for the Mathematician. Holden-Day, 1967, S. xix.
  5. M. Randall Holmes: Inhomogeneity of the urelements in the usual models of NFU. 29. Dezember 2005, auf: Semantic Scholar. S. 2.